ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant APS index for Dirac operators of non-product type near the boundary

87   0   0.0 ( 0 )
 نشر من قبل Maxim Braverman
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a generalized APS boundary problem for a G-invariant Dirac-type operator, which is not of product type near the boundary. We establish a delocalized version (a so-called Kirillov formula) of the equivariant index theorem for this operator. We obtain more explicit formulas for different geometric Dirac-type operators. In particular, we get a formula for the equivariant signature of a local system over a manifold with boundary. In case of a trivial local system, our formula can be viewed as a new way to compute the infinitesimal equivariant eta-invariant of S. Goette. We explicitly compute all the terms in this formula, which involve the equivariant Hirzebruch L-form and its transgression, for four-dimensional SKR manifolds, a class including many Kaehler conformally Einstein manifolds, in the case where the boundary is given as the zero level set of a certain Killing potential. In the case of SKR metrics which are local Kaehler products, these terms are zero, and we obtain a vanishing result for the infinitesimal equivariant eta invariant.



قيم البحث

اقرأ أيضاً

We study the index of the APS boundary value problem for a strongly Callias-type operator $D$ on a complete even dimensional Riemannian manifold $M$ (the odd dimensional case was considered in our previous paper arXiv:1706.06737). We use this index t o define the relative $eta$-invariant $eta(A_1,A_0)$ of two strongly Callias-type operators, which are equal outside of a compact set. Even though in our situation the $eta$-invariants of $A_1$ and $A_0$ are not defined, the relative $eta$-invariant behaves as if it were the difference $eta(A_1)-eta(A_0)$. We also define the spectral flow of a family of such operators and use it compute the variation of the relative $eta$-invariant.
We consider a complete Riemannian manifold M whose boundary is a disjoint union of finitely many complete connected Riemannian manifolds. We compute the index of a local boundary value problem for a strongly Callias-type operator on M. Our result ext ends an index theorem of D. Freed to non-compact manifolds, thus providing a new insight on the Horava-Witten anomaly.
246 - Pengshuai Shi 2016
We compute the index of a Callias-type operator with APS boundary condition on a manifold with compact boundary in terms of combination of indexes of induced operators on a compact hypersurface. Our result generalizes the classical Callias-type index theorem to manifolds with compact boundary.
92 - Maxim Braverman 2018
We consider a hyperbolic Dirac-type operator with growing potential on a a spatially non-compact globally hyperbolic manifold. We show that the Atiyah-Patodi-Singer boundary value problem for such operator is Fredholm and obtain a formula for this in dex in terms of the local integrals and the relative eta-invariant introduced by Braverman and Shi. This extends recent results of Bar and Strohmaier, who studied the index of a hyperbolic Dirac operator on a spatially compact globally hyperbolic manifold.
127 - Pengshuai Shi 2020
Let $mathcal{A}_0$ and $mathcal{A}_1$ be two self-adjoint Fredholm Dirac-type operators defined on two non-compact manifolds. If they coincide at infinity so that the relative heat operator is trace-class, one can define their relative eta function a s in the compact case. The regular value of this function at the zero point, which we call the relative eta invariant of $mathcal{A}_0$ and $mathcal{A}_1$, is a generalization of the eta invariant to non-compact situation. We study its variation formula and gluing law. In particular, under certain conditions, we show that this relative eta invariant coincides with the relative eta invariant that we previously defined using APS index of strongly Callias-type operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا