ﻻ يوجد ملخص باللغة العربية
Hexagonal ferrites do not only have enormous commercial impact ({pounds}2 billion/year in sales) due to applications that include ultra-high density memories, credit card stripes, magnetic bar codes, small motors and low-loss microwave devices, they also have fascinating magnetic and ferroelectric quantum properties at low temperatures. Here we report the results of tuning the magnetic ordering temperature in PbFe$_{12-x}$Ga$_x$O$_{19}$ to zero by chemical substitution $x$. The phase transition boundary is found to vary as $T_N sim (1-x/x_c)^{2/3}$ with $x_c$ very close to the calculated spin percolation threshold which we determine by Monte Carlo simulations, indicating that the zero-temperature phase transition is geometrically driven. We find that this produces a form of compositionally-tuned, insulating, ferrimagnetic quantum criticality. Close to the zero temperature phase transition we observe the emergence of an electric-dipole glass induced by magneto-electric coupling. The strong frequency behaviour of the glass freezing temperature $T_m$ has a Vogel-Fulcher dependence with $T_m$ finite, or suppressed below zero in the zero frequency limit, depending on composition $x$. These quantum-mechanical properties, along with the multiplicity of low-lying modes near to the zero-temperature phase transition, are likely to greatly extend applications of hexaferrites into the realm of quantum and cryogenic technologies.
We report a new peculiar effect of the interaction between a sublattice of frustrated quantum spin-1/2 chains and a sublattice of pseudospin-1/2 centers (quantum electric dipoles) uniquely co-existing in the complex oxide Li2ZrCuO4. 7Li nuclear magne
We consider phase separated states in magnetic oxides (MO) thin films. We show that these states have a non-zero electric polarization. Moreover, the polarization is intimately related to a spatial distribution of magnetization in the film. Polarized
The structural and magnetic properties of the hexagonal four-layer form of SrMnO$_3$ have been investigated by combining magnetization measurements, electron diffraction and high-resolution synchrotron X-ray and neutron powder diffraction. Below 350K
We report an ultrasonic investigation of the elastic moduli on a single crystal of hexagonal YMnO_3 as a function of temperature. Stiffening anomalies in the antiferromagnetic Neel state below T_N = 72.4 K are observed on all the four elastic moduli
We submit that the magnetic space-group Cac (#9.41) is consistent with the established magnetic structure of BaFe2Se3, with magnetic dipole moments in a motif that uses two ladders [Caron J M et al 2011 Phys. Rev. B 84 180409(R)]. The corresponding c