ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-elastic coupling in hexagonal YMnO_3

135   0   0.0 ( 0 )
 نشر من قبل Poirier Mario
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an ultrasonic investigation of the elastic moduli on a single crystal of hexagonal YMnO_3 as a function of temperature. Stiffening anomalies in the antiferromagnetic Neel state below T_N = 72.4 K are observed on all the four elastic moduli C_{ii}. The anomalies are the most important on C_{11} and C_{66} for in-plane elastic deformations; this is consistent with a strong coupling of the lattice with the in-plane exchange interactions. We use a Landau free energy model to account for these elastic anomalies. We derive an expression which relates the temperature profile of the anomaly to the order parameter; the critical exponent associated to this parameter $beta$ = 0.42 is not consistent with a chiral XY or 3D Heisenberg universality class, but more in agreement with a conventional antiferromagnetic long range order. A tiny softening anomaly on C_{11} for which hysteresis effects are observed could be indicative of an interaction between ferroelectric and magnetic domains at T_N. Moreover, magnetic fluctuations effects both above and below T_N are identified through abnormal temperature and magnetic field effects.



قيم البحث

اقرأ أيضاً

219 - J. Varignon , S. Petit , A. Gelle 2013
The present paper proposes the direct calculation of the microscopic contributions to the magneto-electric coupling, using ab initio methods. The electrostrictive and the Dzyaloshinskii-Moriya contributions were evaluated individually. For this purpo se a specific method was designed, combining DFT calculations and embedded fragments, explicitely correlated, quantum chemical calculations. This method allowed us to calculate the evolution of the magnetic couplings as a function of an applied electric field. We found that in $rm YMnO_3$ the Dzyaloshinskii-Moriya contribution to the magneto-electric effect is three orders of magnitude weaker than the electrostrictive contribution. Strictive effects are thus dominant in the magnetic exchange evolution under an applied electric field, and by extension on the magneto-electric effect. These effects remain however quite small and the modifications of the magnetic excitations under an applied electric field will be difficult to observe experimentally. Another important conclusion is that the amplitude of the magneto-electric effect is very small. Indeed, it can be shown that the linear magneto-electric tensor is null due to the inter-layer symmetry operations.
We have used in-field neutron and X-ray single crystal diffraction to measure the incommensurability δ of the crystal and magnetic structure of multiferroic TbMnO3 . We show that the flop in the electric polarization at the critical field HC, fo r field H along the a− and b−axis coincides with a 1st order transition to a commensurate phase with propagation vector κ = (0, 1/4, 0). In-field X-ray diffraction measurements show that the quadratic magneto-elastic coupling breaks down with applied field as shown by the observation of the 1st harmonic lattice reflections above and below HC . This indicates that magnetic field induces a linear magneto-elastic coupling. We argue that the commensurate phase can be described by an ordering of Mn-O-Mn bond angles.
546 - A. Barcza , Z. Gercsi , H. Michor 2012
We use neutron diffraction, magnetometry and low temperature heat capacity to probe giant magneto-elastic coupling in CoMnSi-based antiferromagnets and to establish the origin of the entropy change that occurs at the metamagnetic transition in such c ompounds. We find a large difference between the electronic density of states of the antiferromagnetic and high magnetisation states. The magnetic field-induced entropy change is composed of this contribution and a significant counteracting lattice component, deduced from the presence of negative magnetostriction. In calculating the electronic entropy change, we note the importance of using an accurate model of the electronic density of states, which here varies rapidly close to the Fermi energy.
Using Raman spectroscopy, we investigate the lattice phonons, magnetic excitations, and magneto-elastic coupling in the distorted triangular-lattice Heisenberg antiferromagnet alpha-SrCr2O4, which develops helical magnetic order below 43 K. Temperatu re dependent phonon spectra are compared to predictions from density functional theory calculations which allows us to assign the observed modes and identify weak effects arising from coupled lattice and magnetic degrees of freedom. Raman scattering associated with two-magnon excitations is observed at 20 meV and 40 meV. These energies are in general agreement with our ab-initio calculations of exchange interactions and earlier theoretical predictions of the two-magnon Raman response of triangular-lattice antiferromagnets. The temperature dependence of the two-magnon excitations indicates that spin correlations persist well above the Neel temperature.
In this work we investigate single crystal GdTiO$_{3}$, a promising candidate material for Floquet engineering and magnetic control, using ultrafast optical pump-probe reflectivity and magneto-optical Kerr spectroscopy. GdTiO${}_{3}$ is a Mott-Hubbar d insulator with a ferrimagnetic and orbitally ordered ground state (textit{T${}_{C}$} = 32 K). We observe multiple signatures of the magnetic phase transition in the photoinduced reflectivity signal, in response to above band-gap 660 nm excitation. Magnetic dynamics measured via Kerr spectroscopy reveal optical perturbation of the ferrimagnetic order on spin-lattice coupling timescales, highlighting the competition between the Gd${}^{3+}$ and Ti${}^{3+}$ magnetic sub-lattices. Furthermore, a strong coherent oscillation is present in the reflection and Kerr dynamics, attributable to an acoustic strain wave launched by the pump pulse. The amplitude of this acoustic mode is highly dependent on the magnetic order of the system, growing sharply in magnitude at textit{T${}_{C}$}, indicative of strong magneto-elastic coupling. The driving mechanism, involving strain-induced modification of the magnetic exchange interaction, implies an indirect method of coupling light to the magnetic degrees of freedom and emphasizes the potential of GdTiO${}_{3}$ as a tunable quantum material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا