ﻻ يوجد ملخص باللغة العربية
We submit that the magnetic space-group Cac (#9.41) is consistent with the established magnetic structure of BaFe2Se3, with magnetic dipole moments in a motif that uses two ladders [Caron J M et al 2011 Phys. Rev. B 84 180409(R)]. The corresponding crystal class m1 allows axial and polar dipoles and forbids bulk ferromagnetism. The compound supports magneto-electric multipoles, including a magnetic charge (monopole) and an anapole (magnetic toroidal dipole) visible in the Bragg diffraction of x-rays and neutrons. Our comprehensive simulation of neutron Bragg diffraction by BaFe2Se3 exploits expressions of a general nature that can be of use with other magnetic materials. Electric toroidal moments are also allowed in BaFe2Se3. A discussion of our findings for resonant x-ray Bragg diffraction illustrates the benefit of a common platform for neutron and x-ray diffraction.
Magneto-electric multipoles, which are odd under both space-inversion $cal I$ and time-reversal $cal T$ symmetries, are fundamental in understanding and characterizing magneto-electric materials. However, the detection of these magneto-electric multi
We study the charge and spin density distributions of excitonic insulator (EI) states in the tight-binding approximation. We first discuss the charge and spin densities of the EI states when the valence and conduction bands are composed of orthogonal
We succeed in deriving an exact expression for the magnetic interaction of neutrons and electrons including magneto-electric operators, allowed in the absence of a centre of inversion symmetry. Central characters are a spin anapole and an orbital (to
We consider phase separated states in magnetic oxides (MO) thin films. We show that these states have a non-zero electric polarization. Moreover, the polarization is intimately related to a spatial distribution of magnetization in the film. Polarized
We show that orbital currents in a CuO2 plane, if present, should be described by two independent parity and time-reversal odd order parameters, a toroidal dipole (anapole) and a magnetic quadrupole. Based on this, we derive the resonant X-ray diffra