ﻻ يوجد ملخص باللغة العربية
Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of charge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on both legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder.
We investigate a ladder system with two inequivalent legs, namely a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are
The zero-field excitation spectrum of the strong-leg spin ladder (C$_7$H$_10$N)$_2$CuBr$_4$ (DIMPY) is studied with a neutron time-of-flight technique. The spectrum is decomposed into its symmetric and asymmetric parts with respect to the rung moment
We propose theoretically how unconventional superconducting pairing in a repulsively interacting Hubbard ladder can be enhanced via the application of a Floquet driving. Initially the Hubbard ladder is prepared in its charge-density-wave dominated gr
The Hubbard model on a two-leg ladder structure has been studied by a combination of series expansions at T=0 and the density-matrix renormalization group. We report results for the ground state energy $E_0$ and spin-gap $Delta_s$ at half-filling, as
Magnetization plateaux emerging in quantum spin systems due to spontaneously breaking of translational symmetry have been reported both theoretically and experimentally. The broken symmetry can induce reconstruction of elementary excitations such as