ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground-state and spectral properties of an asymmetric Hubbard ladder

143   0   0.0 ( 0 )
 نشر من قبل Eric Jeckelmann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a ladder system with two inequivalent legs, namely a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wavenumbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.



قيم البحث

اقرأ أيضاً

Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of c harge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on both legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder.
We revisit the two-site Hubbard-Holstein model by using extended phonon coherent states. The nontrivial singlet bipolaron is studied exactly in the whole coupling regime. The ground-state (GS) energy and the double occupancy probability are calculate d. The linear entropy is exploited successfully to quantify bipartite entanglement between electrons and their environment phonons, displaying a maximum entanglement of the singlet-bipolaron in strong coupling regime. A dramatic drop in the crossover regime is observed in the GS fidelity and its susceptibility. The bipolaron properties is also characterized classically by correlation functions. It is found that the crossover from a two-site to single-site bipolaron is more abrupt and shifts to a larger electron-phonon coupling strength as electron-electron Coulomb repulsion increases.
The strong-leg S=1/2 Heisenberg spin ladder system (C7H10N)2CuBr4 is investigated using Density Matrix Renormalization Group (DMRG) calculations, inelastic neutron scattering, and bulk magneto-thermodynamic measurements. Measurements showed qualitati ve differences compared to the strong-rung case. A long-lived two-triplon bound state is confirmed to persist across most of the Brillouin zone in zero field. In applied fields, in the Tomonaga-Luttinger spin liquid phase, elementary excitations are attractive, rather than repulsive. In the presence of weak inter-ladder interactions, the strong-leg system is considerably more prone to 3-dimensional ordering.
We introduce Gutzwiller conjugate gradient minimization (GCGM) theory, an ab initio quantum many-body theory for computing the ground-state properties of infinite systems. GCGM uses the Gutzwiller wave function but does not use the commonly adopted G utzwiller approximation (GA), which is a major source of inaccuracy. Instead, the theory uses an approximation that is based on the occupation probability of the on-site configurations, rather than approximations that decouple the site-site correlations as used in the GA. We test the theory in the one-dimensional and two-dimensional Hubbard models at various electron densities and find that GCGM reproduces energies and double occupancies in reasonable agreement with benchmark data at a very small computational cost.
A new variational approach is proposed at zero temperature for a finite density of charge carriers in order to study ground state features of the Frohlich model including electron-electron and electron-phonon interactions. Within the intermediate ele ctron-phonon coupling regime characteristic of large polarons, the approach takes into account on the same footing polaron formation and polaron-polaron correlations which play a relevant role going from low to high charge densities. Including fluctuations on top of the variational approach, the electronic spectral function is calculated from the weak to the intermediate electron-phonon coupling regime finding a peak-dip-hump line shape. The spectra are characterized by a transfer of spectral weight from the incoherent hump to the coherent peak with decreasing the electron-phonon coupling constant or with increasing the particle density. Three different density regimes stem out: the first, at low densities, where the features of a single large polaron with a substantial incoherent spectral weight are not modified by charge carrier interactions; a second one, at intermediate densities, where the polaronic liquid shows a rapid crossover from incoherent to coherent dynamics; the third one, at high densities, where screening effects are so prominent that the system presents a conventional metallic phase. The results obtained in the low to intermediate density regime turn out to be relevant for the interpretation of recent tunneling and photoemission experiments in SrTiO3-based systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا