ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamically enhanced unconventional superconducting correlations in a Hubbard ladder

112   0   0.0 ( 0 )
 نشر من قبل Ameneh Sheikhan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose theoretically how unconventional superconducting pairing in a repulsively interacting Hubbard ladder can be enhanced via the application of a Floquet driving. Initially the Hubbard ladder is prepared in its charge-density-wave dominated ground state. A periodic Floquet drive is applied which modulates oppositely the energy offset of the two chains and effectively reduces the tunneling along the rungs. This modulation of the energy offsets might be caused by the excitation of a suitable phononic mode in solids or a superlattice modulation in cold atomic gases. We use state-of-the-art density matrix renormalization group methods to monitor the resulting real-time dynamics of the system. We find an enormous enhancement of the unconventional superconducting pair correlations by approximately one order of magnitude.



قيم البحث

اقرأ أيضاً

We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-fi lling when 4V > U gives way to a d_{xy} -wave superconducting instability away from half-filling, when the Fermi surface is not perfectly nested, and for sufficiently large repulsive and a range of on-site repulsive interaction. In addition, when nesting is further suppressed and in presence of a nearest-neighbor attraction, a triplet time-reversal breaking (p_x + ip_y)-wave pairing instability emerges, competing with the d_{x2+y2} pairing state that is known to dominate at fillings just slightly away from half. At even smaller fillings, where the Fermi surface no longer presents any nesting, the (p_x +ip_y)-wave superconducting phase dominates in the whole regime of on-site repulsions and nearest-neighbor attractions, while d_{xy}-pairing occurs in the presence of on-site attraction. Our results suggest that zero-energy Majorana fermions can be realized on a square lattice in the presence of a magnetic field. For a system of cold fermionic atoms on a two-dimensional square optical lattice, both an on-site repulsion and a nearest-neighbor attraction would be required, in addition to rotation of the system to create vortices. We discuss possible ways of experimentally engineering the required interaction terms in a cold atom system.
We employ the weak-coupling renormalization group approach to study unconventional superconducting phases emerging in the extended, repulsive Hubbard model on paradigmatic two-dimensional lattices. Repulsive interactions usually lead to higher-angula r momentum Cooper pairing. By considering not only longer-ranged hoppings, but also non-local electron-electron interactions, we are able to find superconducting solutions for all irreducible representations on the square and hexagonal lattices, including extended regions of chiral topological superconductivity. For the square, triangular and honeycomb lattices, we provide detailed superconducting phase diagrams as well as the coupling strengths which quantify the corresponding critical temperatures depending on the bandstructure parameters, band filling, and interaction parameters. We discuss the sensitivity of the method with respect to the numerical resolution of the integration grid and the patching scheme. Eventually we show how to efficiently reach a high numerical accuracy.
It is commonly assumed that topological phase transitions in topological superconductors are accompanied by a closing of the topological gap or a change of the symmetry of the system. We demonstrate that an unconventional topological phase transition with neither gap closing nor a change of symmetry is possible. We consider a nanoscopic length ladder of atoms on a superconducting substrate, comprising self-organized magnetic moments coupled to itinerant electrons. For a range of conditions, the ground state of such a system prefers helical magnetic textures, self-sustaining topologically nontrivial phase. Abrupt changes in the magnetic order as a function of induced superconducting pairing or chemical potential can cause topological phase transitions without closing the topological gap. Furthermore, the ground state prefers either parallel or anti-parallel configurations along the rungs, and the anti-parallel configuration causes an emergent time reversal asymmetry protecting Kramers pairs of Majorana zero modes, but in a BDI topological superconductor. We determine the topological invariant and inspect the boundary Majorana zero modes.
We discuss a detailed phase diagram and other microscopic characteristics on the applied magnetic field - temperature (H_a-T) plane for a simple model of correlated fluid represented by a two-dimensional (2D) gas of heavy quasiparticles with masses d ependent on the spin direction and the effective field generated by the electron correlations. The consecutive transitions between the Bardeen-Cooper-Schrieffer (BCS) and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases are either continuous or discontinuous, depending on the values of H_a and T. In the latter case, weak metamagnetic transitions occur at the BCS-FFLO boundary. We single out two different FFLO phases, as well as a reentrant behaviour of one of them at high fields. The results are compared with those for ordinary Landau quasiparticles in order to demonstrate the robustness of the FFLO states against the BCS state for the case with spin-dependent masses (SDM). We believe that the mechanism of FFLO stabilization by SDM is generic: other high-field low-temperature (HFLT) superconducting phases benefit from SDM as well.
It was previously suggested that an odd-frequency pair amplitude exists in the vicinity of boundaries in unconventional superconductors. We develop this idea and quest for a novel superconducting order parameter with an odd-frequency dependence. For this purpose, we focus on p-wave superconductors and extend the quasi-classical theory to include the odd-frequency dependence in the order parameter. Both of the frequency and spacial dependences of the order parameter are determined self-consistently. Under a finite electron-phonon interaction, it is found that an odd-frequency order parameter is stabilized near the boundary and coexists with the even-frequency one. By analyzing the induced odd-frequency pair amplitude in terms of the superconducting quasi-particle wavefunction, it is found that the mid-gap bound state generates the emergent odd-frequency order parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا