ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations in magnetization plateaux of a frustrated spin ladder

171   0   0.0 ( 0 )
 نشر من قبل Kota Sasaki
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetization plateaux emerging in quantum spin systems due to spontaneously breaking of translational symmetry have been reported both theoretically and experimentally. The broken symmetry can induce reconstruction of elementary excitations such as Goldstone and Higgs modes, whereas its microscopic mechanism and reconstructed quasi-particle in magnetization-plateau phases have remained unclear so far. Here we theoretically study magnetic excitations in the magnetization-plateau phases of a frustrated spin ladder by using dynamical density-matrix renormalization-group method. Additionally, analytical approaches with perturbation theory are performed to obtain intuitive view of magnetic excitations. Comparison between numerical and analytical results indicates the presence of a reconstructed quasi-particle originating from spontaneously broken translational symmetry, which is realized as a collective mode of spin trimer called trimeron.

قيم البحث

اقرأ أيضاً

We argue that collinearly ordered states which exist in strongly frustrated spin systems for special rational values of the magnetization are stabilized by thermal as well as quantum fluctuations. These general predictions are tested by Monte Carlo s imulations for the classical and Lanczos diagonalization for the S=1/2 frustrated square-lattice antiferromagnet.
We have found an unusual competition of two frustration mechanisms in the 2D quantum antiferromagnet Cs$_2$CoBr$_4$. The key actors are the alternation of single-ion planar anisotropy direction of the individual magnetic Co$^{2+}$ ions, and their arr angement in a distorted triangular lattice structure. In particular, the uniquely oriented Ising-type anisotropy emerges from the competition of easy-plane ones, and for a magnetic field applied along this axis one finds a cascade of five ordered phases at low temperatures. Two of these phases feature magnetization plateaux. The low-field one is supposed to be a consequence of a collinear ground state stabilized by the anisotropy, while the other plateau bears characteristics of an up-up-down state exclusive for lattices with triangular exchange patterns. Such coexistence of the magnetization plateaux is a fingerprint of competition between the anisotropy and the geometric frustration in Cs$_2$CoBr$_4$.
The field induced magnetic phase transitions of Cs$_2$CuBr$_4$ were investigated by means of magnetization process and neutron scattering experiments. This system undergoes magnetic phase transition at Ne{e}l temperature $T_mathrm{N}=1.4$ K at zero f ield, and exhibits the magnetization plateau at approximately one third of the saturation magnetization for the field directions $Hparallel b$ and $Hparallel c$. In the present study, additional symptom of the two-third magnetization plateau was found in the field derivative of the magnetization process. The magnetic structure was found to be incommensurate with the ordering vector $boldsymbol{Q}=(0, 0.575, 0)$ at zero field. With increasing magnetic field parallel to the c-axis, the ordering vector increases continuously and is locked at $boldsymbol{Q}=(0, 0.662, 0)$ in the plateau field range $13.1 mathrm{T} < H < 14.4 mathrm{T}$. This indicates that the collinear textit{up-up-down} spin structure is stabilized by quantum fluctuation at the magnetization plateau.
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presenc e of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations above a spin gap of $Delta = 10.6$ meV at 1.5 K, a value consistent with the estimates extracted from magnetic susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first-principles.
The effect of disorder is studied on the field-induced quantum phase transition in the frustrated spin-ladder compound H8C4SO2Cu2(Cl[1-x]Brx)4 using bulk magnetic and thermodynamic measurements. The parent material (x=0) is a quantum spin liquid, whi ch in applied fields is known to form a magnon condensate with long-range helimagnetic order. We show that bond randomness introduced by a chemical substitution on the non-magnetic halogene site destroys this phase transition at very low concentrations, already for x=0.01. The extreme fragility of the magnon condensate is attributed to random frustration in the incommensurate state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا