ﻻ يوجد ملخص باللغة العربية
Magnetization plateaux emerging in quantum spin systems due to spontaneously breaking of translational symmetry have been reported both theoretically and experimentally. The broken symmetry can induce reconstruction of elementary excitations such as Goldstone and Higgs modes, whereas its microscopic mechanism and reconstructed quasi-particle in magnetization-plateau phases have remained unclear so far. Here we theoretically study magnetic excitations in the magnetization-plateau phases of a frustrated spin ladder by using dynamical density-matrix renormalization-group method. Additionally, analytical approaches with perturbation theory are performed to obtain intuitive view of magnetic excitations. Comparison between numerical and analytical results indicates the presence of a reconstructed quasi-particle originating from spontaneously broken translational symmetry, which is realized as a collective mode of spin trimer called trimeron.
We argue that collinearly ordered states which exist in strongly frustrated spin systems for special rational values of the magnetization are stabilized by thermal as well as quantum fluctuations. These general predictions are tested by Monte Carlo s
We have found an unusual competition of two frustration mechanisms in the 2D quantum antiferromagnet Cs$_2$CoBr$_4$. The key actors are the alternation of single-ion planar anisotropy direction of the individual magnetic Co$^{2+}$ ions, and their arr
The field induced magnetic phase transitions of Cs$_2$CuBr$_4$ were investigated by means of magnetization process and neutron scattering experiments. This system undergoes magnetic phase transition at Ne{e}l temperature $T_mathrm{N}=1.4$ K at zero f
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presenc
The effect of disorder is studied on the field-induced quantum phase transition in the frustrated spin-ladder compound H8C4SO2Cu2(Cl[1-x]Brx)4 using bulk magnetic and thermodynamic measurements. The parent material (x=0) is a quantum spin liquid, whi