ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixing time for random walk on supercritical dynamical percolation

82   0   0.0 ( 0 )
 نشر من قبل Perla Sousi
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider dynamical percolation on the $d$-dimensional discrete torus of side length $n$, $mathbb{Z}_n^d$, where each edge refreshes its status at rate $mu=mu_nle 1/2$ to be open with probability $p$. We study random walk on the torus, where the walker moves at rate $1/(2d)$ along each open edge. In earlier work of two of the authors with A. Stauffer, it was shown that in the subcritical case $p<p_c(mathbb{Z}^d)$, the (annealed) mixing time of the walk is $Theta(n^2/mu)$, and it was conjectured that in the supercritical case $p>p_c(mathbb{Z}^d)$, the mixing time is $Theta(n^2+1/mu)$; here the implied constants depend only on $d$ and $p$. We prove a quenched (and hence annealed) version of this conjecture up to a poly-logarithmic factor under the assumption $theta(p)>1/2$. Our proof is based on percolation results (e.g., the Grimmett-Marstrand Theorem) and an analysis of the volume-biased evolving set process; the key point is that typically, the evolving set has a substantial intersection with the giant percolation cluster at many times. This allows us to use precise isoperimetric properties of the cluster (due to G. Pete) to infer rapid growth of the evolving set, which in turn yields the upper bound on the mixing time.



قيم البحث

اقرأ أيضاً

We consider random walk on dynamical percolation on the discrete torus $mathbb{Z}_n^d$. In previous work, mixing times of this process for $p<p_c(mathbb{Z}^d)$ were obtained in the annealed setting where one averages over the dynamical percolation en vironment. Here we study exit times in the quenched setting, where we condition on a typical dynamical percolation environment. We obtain an upper bound for all $p$ which for $p<p_c$ matches the known lower bound.
We study a random walk on $mathbb{F}_p$ defined by $X_{n+1}=1/X_n+varepsilon_{n+1}$ if $X_n eq 0$, and $X_{n+1}=varepsilon_{n+1}$ if $X_n=0$, where $varepsilon_{n+1}$ are independent and identically distributed. This can be seen as a non-linear analo gue of the Chung--Diaconis--Graham process. We show that the mixing time is of order $log p$, answering a question of Chatterjee and Diaconis.
Let $xi(n, x)$ be the local time at $x$ for a recurrent one-dimensional random walk in random environment after $n$ steps, and consider the maximum $xi^*(n) = max_x xi(n,x)$. It is known that $limsup xi^*(n)/n$ is a positive constant a.s. We prove th at $liminf_n (logloglog n)xi^*(n)/n$ is a positive constant a.s.; this answers a question of P. Revesz (1990). The proof is based on an analysis of the {em valleys /} in the environment, defined as the potential wells of record depth. In particular, we show that almost surely, at any time $n$ large enough, the random walker has spent almost all of its lifetime in the two deepest valleys of the environment it has encountered. We also prove a uniform exponential tail bound for the ratio of the expected total occupation time of a valley and the expected local time at its bottom.
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w ithout the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically, we obtain a strong law of large numbers, a functional central limit theorem and large deviation estimates for the position of the random walker under the annealed law in a high density regime. The main obstacle is the intrinsic lack of monotonicity in higher-dimensional, non-nearest neighbour settings. Here we develop more general renormalization and renewal schemes that allow us to overcome this issue. As a second application of our methods, we provide an alternative proof of the ballistic behaviour of the front of (the discrete-time version of) the infection model introduced in [23].
We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Su rprisingly, the random walker may behave very differently depending on whether the underlying environment particles perform lazy or non-lazy random walks, which is related to a notion of permeability of the system. We also provide a strong law of large numbers, a functional central limit theorem and large deviation bounds under an ellipticity condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا