ﻻ يوجد ملخص باللغة العربية
We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Surprisingly, the random walker may behave very differently depending on whether the underlying environment particles perform lazy or non-lazy random walks, which is related to a notion of permeability of the system. We also provide a strong law of large numbers, a functional central limit theorem and large deviation bounds under an ellipticity condition.
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
We study the limiting occupation density process for a large number of critical and driftless branching random walks. We show that the rescaled occupation densities of $lfloor sNrfloor$ branching random walks, viewed as a function-valued, increasing
We study models of continuous time, symmetric, $Z^d$-valued random walks in random environments. One of our aims is to derive estimates on the decay of transition probabilities in a case where a uniform ellipticity assumption is absent. We consider t
We introduce a new type of random walk where the definition of edge reinforcement is very different from the one in the reinforced random walk models studied so far, and investigate its basic properties, such as null/positive recurrence, transience,