ﻻ يوجد ملخص باللغة العربية
We study a random walk on $mathbb{F}_p$ defined by $X_{n+1}=1/X_n+varepsilon_{n+1}$ if $X_n eq 0$, and $X_{n+1}=varepsilon_{n+1}$ if $X_n=0$, where $varepsilon_{n+1}$ are independent and identically distributed. This can be seen as a non-linear analogue of the Chung--Diaconis--Graham process. We show that the mixing time is of order $log p$, answering a question of Chatterjee and Diaconis.
We consider dynamical percolation on the $d$-dimensional discrete torus of side length $n$, $mathbb{Z}_n^d$, where each edge refreshes its status at rate $mu=mu_nle 1/2$ to be open with probability $p$. We study random walk on the torus, where the wa
Consider a system of coalescing random walks where each individual performs random walk over a finite graph G, or (more generally) evolves according to some reversible Markov chain generator Q. Let C be the first time at which all walkers have coales
We define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph $G$, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW by using a
We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival t
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w