ﻻ يوجد ملخص باللغة العربية
We consider random walk on dynamical percolation on the discrete torus $mathbb{Z}_n^d$. In previous work, mixing times of this process for $p<p_c(mathbb{Z}^d)$ were obtained in the annealed setting where one averages over the dynamical percolation environment. Here we study exit times in the quenched setting, where we condition on a typical dynamical percolation environment. We obtain an upper bound for all $p$ which for $p<p_c$ matches the known lower bound.
We consider dynamical percolation on the $d$-dimensional discrete torus of side length $n$, $mathbb{Z}_n^d$, where each edge refreshes its status at rate $mu=mu_nle 1/2$ to be open with probability $p$. We study random walk on the torus, where the wa
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corre
Following similar analysis to that in Lacoin (PTRF 159, 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on the d-dimensional integer lattice is almost surely a constant, which does not depend o
In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm so-called Walk on Moving Spheres was already introduced in the Brownian context. The aim is therefore to g
We revisit an unpublished paper of Vervoort (2002) on the once reinforced random walk, and prove that this process is recurrent on any graph of the form $mathbb{Z}times Gamma$, with $Gamma$ a finite graph, for sufficiently large reinforcement paramet