ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal fluctuations of Floquet topological invariants at low frequencies

53   0   0.0 ( 0 )
 نشر من قبل Martin Rodriguez-Vega
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the low-frequency dynamics of periodically driven one-dimensional systems hosting Floquet topological phases. We show, both analytically and numerically, in the low-frequency limit $Omegato0$, the topological invariants of a chirally-symmetric driven system exhibit universal fluctuations. While the topological invariants in this limit nearly vanish on average over a small range of frequencies, we find that they follow a universal Gaussian distribution with a width that scales as $1/sqrt{Omega}$. We explain this scaling based on a diffusive structure of the winding numbers of the Floquet-Bloch evolution operator at low frequency. We also find that the maximum quasienergy gap remains finite and scales as $Omega^2$. Thus, we argue that the adiabatic limit of a Floquet topological insulator is highly structured, with universal fluctuations persisting down to very low frequencies.

قيم البحث

اقرأ أيضاً

We introduce $mathbb Z_2$-valued bulk invariants for symmetry-protected topological phases in $2+1$ dimensional driven quantum systems. These invariants adapt the $W_3$-invariant, expressed as a sum over degeneracy points of the propagator, to the re spective symmetry class of the Floquet-Bloch Hamiltonian. The bulk-boundary correspondence that holds for each invariant relates a non-zero value of the bulk invariant to the existence of symmetry-protected topological boundary states. To demonstrate this correspondence we apply our invariants to a chiral Harper, time-reversal Kane-Mele, and particle-hole symmetric graphene model with periodic driving, where they successfully predict the appearance of boundary states that exist despite the trivial topological character of the Floquet bands. Especially for particle-hole symmetry, combination of the $W_3$ and the $mathbb Z_2$-invariants allows us to distinguish between weak and strong topological phases.
We develop a theory of topological transitions in a Floquet topological insulator, using graphene irradiated by circularly polarized light as a concrete realization. We demonstrate that a hallmark signature of such transitions in a static system, i.e . metallic bulk transport with conductivity of order $e^2/h$, is substantially suppressed at some Floquet topological transitions in the clean system. We determine the conditions for this suppression analytically and confirm our results in numerical simulations. Remarkably, introducing disorder dramatically enhances this transport by several orders of magnitude.
A key feature of topological insulators (TI) is symplectic symmetry of the Hamiltonian which changes to unitary when time reversal symmetry is lifted and the topological phase transition occurs. However, such a crossover has never been explicitly obs erved, by directly probing the symmetry class of the Hamiltonian. In this report, we have probed the symmetry class of topological insulators by measuring the mesoscopic conductance fluctuations in the TI Bi$_{1.6}$Sb$_{0:4}$Te$_2$Se, which shows an exact factor of two reduction on application of a magnetic field due to crossover from symplectic to unitary symmetry classes. The reduction provides an unambiguous proof that the fluctuations arise from the universal conductance fluctuations (UCF), due to quantum interference and persists from T = 22 mK to 4.2 K. We have also compared the phase breaking length (l$_phi$) extracted from both magneto-conductivity and UCF which agree well within a factor of two in the entire temperature and gate voltage range. Our experiment confirms UCF as the major source of fluctuations in mesoscopic disordered topological insulators, and the intrinsic preservation of time reversal symmetry in these systems.
We report on van der Waals epitaxial growth, materials characterization and magnetotransport experiments in crystalline nanosheets of Bismuth Telluro-Sulfide (BTS). Highly layered, good-quality crystalline nanosheets of BTS are obtained on SiO$_2$ an d muscovite mica. Weak-antilocalization (WAL), electron-electron interaction-driven insulating ground state and universal conductance fluctuations are observed in magnetotransport experiments on BTS devices. Temperature, thickness and magnetic field dependence of the transport data indicate the presence of two-dimensional surface states along with bulk conduction, in agreement with theoretical models. An extended-WAL model is proposed and utilized in conjunction with a two-channel conduction model to analyze the data, revealing a surface component and evidence of multiple conducting channels. A facile growth method and detailed magnetotransport results indicating BTS as an alternative topological insulator material system are presented.
Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crys talline insulators, obtained as a stack of weakly-coupled two-dimensional layers. The system has tunable and robust surface Dirac cones even though the mirror Chern numbers of the Floquet bulk bands vanish. The number of surface Dirac cones is given by a new topological invariant determined from the scattering matrix of the system. Further, we find that due to particle-hole symmetry, the positions of Dirac cones in the surface Brillouin zone are controlled by an additional invariant, counting the parity of modes present at high symmetry points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا