ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Floquet topological crystalline insulators

104   0   0.0 ( 0 )
 نشر من قبل Konstantinos Ladovrechis
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crystalline insulators, obtained as a stack of weakly-coupled two-dimensional layers. The system has tunable and robust surface Dirac cones even though the mirror Chern numbers of the Floquet bulk bands vanish. The number of surface Dirac cones is given by a new topological invariant determined from the scattering matrix of the system. Further, we find that due to particle-hole symmetry, the positions of Dirac cones in the surface Brillouin zone are controlled by an additional invariant, counting the parity of modes present at high symmetry points.



قيم البحث

اقرأ أيضاً

Anderson localization in two-dimensional topological insulators takes place via the so-called levitation and pair annihilation process. As disorder is increased, extended bulk states carrying opposite topological invariants move towards each other in energy, reducing the size of the topological gap, eventually meeting and localizing. This results in a topologically trivial Anderson insulator. Here, we introduce the anomalous levitation and pair annihilation, a process unique to periodically-driven, or Floquet systems. Due to the periodicity of the quasienergy spectrum, we find it is possible for the topological gap to increase as a function of disorder strength. Thus, after all bulk states have localized, the system remains topologically nontrivial, forming an anomalous Floquet Anderson insulator (AFAI) phase. We show a concrete example for this process, adding disorder via onsite potential kicks to a Chern insulator model. By changing the period between kicks, we can tune which type of (conventional or anomalous) levitation-and-annihilation occurs in the system. We expect our results to be applicable to generic Floquet topological systems and to provide an accessible way to realize AFAIs experimentally, without the need for multi-step driving schemes.
In Hermitian topological systems, the bulk-boundary correspondence strictly constraints boundary transport to values determined by the topological properties of the bulk. We demonstrate that this constraint can be lifted in non-Hermitian Floquet insu lators. Provided that the insulator supports an anomalous topological phase, non-Hermiticity allows us to modify the boundary states independently of the bulk, without sacrificing their topological nature. We explore the ensuing possibilities for a Floquet topological insulator with non-Hermitian time-reversal symmetry, where the helical transport via counterpropagating boundary states can be tailored in ways that overcome the constraints imposed by Hermiticity. Non-Hermitian boundary state engineering specifically enables the enhancement of boundary transport relative to bulk motion, helical transport with a preferred direction, and chiral transport in the same direction on opposite boundaries. We explain the experimental relevance of our findings for the example of photonic waveguide lattices.
In this work, we identify a new class of Z2 topological insulator protected by non-symmorphic crystalline symmetry, dubbed a topological non-symmorphic crystalline insulator. We construct a concrete tight-binding model with the non-symmorphic space g roup pmg and confirm the topological nature of this model by calculating topological surface states and defining a Z2 topological invariant. Based on the projective representation theory, we extend our discussion to other non-symmorphic space groups that allows to host topological non-symmorphic crystalline insulators.
We investigate the electrical conductivity and thermoelectric effects in topological crystalline insulators in the presence of short- and long-range impurity interactions. We employ the generalized Boltzmann formalism for anisotropic Fermi surface sy stems. The conductivity exhibits a local minimum as doping varies owing to the Van Hove singularity in the density of states originated from the saddle point in the surface states band structure. Suppression of the interband scattering of the charge carriers at high-energy Dirac points results in a maximum in the electrical conductivity. Whenever the Fermi level passes an extremum in the conductivity, Seebeck coefficient changes sign. In addition, it is revealed that profound thermoelectric effects can be attained around these extrema points.
117 - Chen Fang , Liang Fu 2017
We show that in the presence of $n$-fold rotation symmetries and time-reversal symmetry, the number of fermion flavors must be a multiple of $2n$ ($n=2,3,4,6$) on two-dimensional lattices, a stronger version of the well-known fermion doubling theorem in the presence of only time-reversal symmetry. The violation of the multiplication theorems indicates anomalies, and may only occur on the surface of new classes of topological crystalline insulators. Put on a cylinder, these states have $n$ Dirac cones on the top and on the bottom surfaces, connected by $n$ helical edge modes on the side surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا