ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Theory of Floquet Topological Transitions

175   0   0.0 ( 0 )
 نشر من قبل Babak Seradjeh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theory of topological transitions in a Floquet topological insulator, using graphene irradiated by circularly polarized light as a concrete realization. We demonstrate that a hallmark signature of such transitions in a static system, i.e. metallic bulk transport with conductivity of order $e^2/h$, is substantially suppressed at some Floquet topological transitions in the clean system. We determine the conditions for this suppression analytically and confirm our results in numerical simulations. Remarkably, introducing disorder dramatically enhances this transport by several orders of magnitude.



قيم البحث

اقرأ أيضاً

We develop the high frequency expansion based on the Brillouin-Wigner (B-W) perturbation theory for driven systems with spin-orbit coupling which is applicable to the cases of silicene, germanene and stanene. We compute the effective Hamiltonian in t he zero photon subspace not only to order $O(omega^{-1})$, but by keeping all the important terms to order $O(omega^{-2})$, and obtain the photo-assisted correction terms to both the hopping and the spin-orbit terms, as well as new longer ranged hopping terms. We then use the effective static Hamiltonian to compute the phase diagram in the high frequency limit and compare it with the results of direct numerical computation of the Chern numbers of the Floquet bands, and show that at sufficiently large frequencies, the B-W theory high frequency expansion works well even in the presence of spin-orbit coupling terms.
The Su-Schrieffer-Heeger model of polyacetylene is a paradigmatic Hamiltonian exhibiting non-trivial edge states. By using Floquet theory we study how the spectrum of this one-dimensional topological insulator is affected by a time-dependent potentia l. In particular, we evidence the competition among different photon-assisted processes and the native topology of the unperturbed Hamiltonian to settle the resulting topology at different driving frequencies. While some regions of the quasienergy spectrum develop new gaps hosting Floquet edge states, the native gap can be dramatically reduced and the original edge states may be destroyed or replaced by new Floquet edge states. Our study is complemented by an analysis of Zak phase applied to the Floquet bands. Besides serving as a simple example for understanding the physics of driven topological phases, our results could find a promising test-ground in cold matter experiments.
We show how transitions between different Lifshitz phases in bilayer Dirac materials with and without spin-orbit coupling can be studied by driving the system. The periodic driving is induced by a laser and the resultant phase diagram is studied in t he high frequency limit using the Brillouin-Wigner perturbation approach to leading order. The examples of such materials include bilayer graphene and spin-orbit coupled materials such as bilayer silicene. The phase diagrams of the effective static models are analyzed to understand the interplay of topological phase transitions, with changes in the Chern number and topological Lifshitz transitions, with the ensuing changes in the Fermi surface. Both the topological transitions and the Lifshitz transitions are tuned by the amplitude of the drive.
Motivated by the quest for experimentally accessible dynamical probes of Floquet topological insulators, we formulate the linear response theory of a periodically driven system. We illustrate the applications of this formalism by giving general expre ssions for optical conductivity of Floquet systems, including its homodyne and heterodyne components and beyond. We obtain the Floquet optical conductivity of specific driven models, including two-dimensional Dirac material such as the surface of a topological insulator, graphene, and the Haldane model irradiated with circularly or linearly polarized laser, as well as semiconductor quantum well driven by an ac potential. We obtain approximate analytical expressions and perform numerically exact calculations of the Floquet optical conductivity in different scenarios of the occupation of the Floquet bands, in particular, the diagonal Floquet distribution and the distribution obtained after a quench. We comment on experimental signatures and detection of Floquet topological phases using optical probes.
Motivated by the recent experimental realization of twisted transition metal dichalcogenide bilayers, we study a simplified model driven by different forms of monochromatic light. As a concrete and representative example we use parameters that corres pond to a twisted MoTe$_2$ homobilayer. First, we consider irradiation with circularly polarized light in free space and demonstrate that the corresponding Floquet Hamiltonian takes the same form as the static Hamiltonian, only with a constant overall shift in quasi-energy. This is in stark contrast to twisted bilayer graphene, where new terms are typically generated under an analagous drive. Longitudinal light, on the other hand, which can be generated from the transverse magnetic mode in a waveguide, has a much more dramatic effect--it renormalizes the tunneling strength between the layers, which effectively permits the tuning of the twist angle {em in-situ}. We find that, by varying the frequency and amplitude of the drive, one can induce a topological transition that cannot be obtained with the traditional form of the Floquet drive in free space. Furthermore, we find that strong drives can have a profound effect on the layer pseudospin texture of the twisted system, which coincides with multiple simultaneous band gap closings in the infinite-frequency limit. Surprisingly, these bandgap closings are not associated with topological transitions. For high but finite drive frequencies near $0.7$eV, the infinite-frequency band crossings become band gap minima of the order of $10^{-6}$ eV or smaller.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا