ﻻ يوجد ملخص باللغة العربية
A key feature of topological insulators (TI) is symplectic symmetry of the Hamiltonian which changes to unitary when time reversal symmetry is lifted and the topological phase transition occurs. However, such a crossover has never been explicitly observed, by directly probing the symmetry class of the Hamiltonian. In this report, we have probed the symmetry class of topological insulators by measuring the mesoscopic conductance fluctuations in the TI Bi$_{1.6}$Sb$_{0:4}$Te$_2$Se, which shows an exact factor of two reduction on application of a magnetic field due to crossover from symplectic to unitary symmetry classes. The reduction provides an unambiguous proof that the fluctuations arise from the universal conductance fluctuations (UCF), due to quantum interference and persists from T = 22 mK to 4.2 K. We have also compared the phase breaking length (l$_phi$) extracted from both magneto-conductivity and UCF which agree well within a factor of two in the entire temperature and gate voltage range. Our experiment confirms UCF as the major source of fluctuations in mesoscopic disordered topological insulators, and the intrinsic preservation of time reversal symmetry in these systems.
We report on van der Waals epitaxial growth, materials characterization and magnetotransport experiments in crystalline nanosheets of Bismuth Telluro-Sulfide (BTS). Highly layered, good-quality crystalline nanosheets of BTS are obtained on SiO$_2$ an
Graphene provides a fascinating testbed for new physics and exciting opportunities for future applications based on quantum phenomena. To understand the coherent flow of electrons through a graphene device, we employ a nanoscale probe that can access
We investigate the Hall conductance of a two-dimensional Chern insulator coupled to an environment causing gain and loss. Introducing a biorthogonal linear response theory, we show that sufficiently strong gain and loss lead to a characteristic non-a
Mesoscopic transport measurements reveal a large effective phase coherence length in epitaxial GaMnAs ferromagnets, contrary to usual 3d-metal ferromagnets. Universal conductance fluctuations of single nanowires are compared for epilayers with a tail
We propose a surface-edge state theory for half quantized Hall conductance of surface states in topological insulators. The gap opening of a single Dirac cone for the surface states in a weak magnetic field is demonstrated. We find a new surface stat