ﻻ يوجد ملخص باللغة العربية
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbour spin interaction in one spatial dimension on the non-equilibrium dynamical phase diagram of the fully-connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the pre-thermal state via a combination of analytic time-dependent spin-wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterised by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.
We derive an exact formula for the scaled cumulant generating function of the time-integrated current associated to an arbitrary ballistically transported conserved charge. Our results rely on the Euler-scale description of interacting, many-body, in
We study the sandpile model on three-dimensional spanning Ising clusters with the temperature $T$ treated as the control parameter. By analyzing the three dimensional avalanches and their two-dimensional projections (which show scale-invariant behavi
The extraction of membrane tubes by molecular motors is known to play an important role for the transport properties of eukaryotic cells. By studying a generic class of models for the tube extraction, we discover a rich phase diagram. In particular w
We introduce a model of interacting Random Walk, whose hopping amplitude depends on the number of walkers/particles on the link. The mesoscopic counterpart of such a microscopic dynamics is a diffusing system whose diffusivity depends on the particle
In quantum many-body systems with local interactions, the effects of boundary conditions are considered to be negligible, at least for sufficiently large systems. Here we show an example of the opposite. We consider a spin chain with two competing in