ﻻ يوجد ملخص باللغة العربية
In quantum many-body systems with local interactions, the effects of boundary conditions are considered to be negligible, at least for sufficiently large systems. Here we show an example of the opposite. We consider a spin chain with two competing interactions, set on a ring with an odd number of sites. When only the dominant interaction is antiferromagnetic, and thus induces topological frustration, the standard antiferromagnetic order (expressed by the magnetization) is destroyed. When also the second interaction turns from ferro to antiferro, an antiferromagnetic order characterized by a site-dependent magnetization which varies in space with an incommensurate pattern, emerges. This modulation results from a ground state degeneracy, which allows to break the translational invariance. The transition between the two cases is signaled by a discontinuity in the first derivative of the ground state energy and represents a quantum phase transition induced by a special choice of boundary conditions.
Ginzburg-Landau theory of continuous phase transitions implicitly assumes that microscopic changes are negligible in determining the thermodynamic properties of the system. In this work we provide an example that clearly contrasts with this assumptio
Recently it was highlighted that one-dimensional antiferromagnetic spin models with frustrated boundary conditions, i.e. periodic boundary conditions in a ring with an odd number of elements, may show very peculiar behavior. Indeed the presence of fr
A central tenant in the classification of phases is that boundary conditions cannot affect the bulk properties of a system. In this work, we show striking, yet puzzling, evidence of a clear violation of this assumption. We use the prototypical exampl
In this paper we examine how the predictions of conformal invariance can be widely exploited to overcome the difficulties of the density-matrix renormalization group near quantum critical points. The main idea is to match the set of low-lying energy
Recent development of ultrashort laser pulses allows for optical control of structural and electronic properties of complex quantum materials. The layered transition metal dichalcogenide MoTe2, which can crystalize into several different structures w