ﻻ يوجد ملخص باللغة العربية
We derive an exact formula for the scaled cumulant generating function of the time-integrated current associated to an arbitrary ballistically transported conserved charge. Our results rely on the Euler-scale description of interacting, many-body, integrable models out of equilibrium given by the generalized hydrodynamics, and on the large deviation theory. Crucially, our findings extend previous studies by accounting for inhomogeneous and dynamical initial states in interacting systems. We present exact expressions for the first three cumulants of the time-integrated current. Considering the non-interacting limit of our general expression for the scaled cumulant generating function, we further show that for the partitioning protocol initial state our result coincides with previous results of the literature. Given the universality of the generalized hydrodynamics, the expression obtained for the scaled cumulant generating function is applicable to any interacting integrable model obeying the hydrodynamic equations, both classical and quantum.
We introduce a model of interacting Random Walk, whose hopping amplitude depends on the number of walkers/particles on the link. The mesoscopic counterpart of such a microscopic dynamics is a diffusing system whose diffusivity depends on the particle
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbour spin interaction in one spatial dimension on the non-equilibrium dynamical phase diagram of the ful
We consider the effects of long-range temporal correlations in many-particle systems, focusing particularly on fluctuations about the typical behaviour. For a specific class of memory dependence we discuss the modification of the large deviation prin
We study the behavior of stationary non-equilibrium two-body correlation functions for Diffusive Systems with equilibrium reference states (DSe). A DSe is described at the mesoscopic level by $M$ locally conserved continuum fields that evolve through
This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified pict