ﻻ يوجد ملخص باللغة العربية
We study the sandpile model on three-dimensional spanning Ising clusters with the temperature $T$ treated as the control parameter. By analyzing the three dimensional avalanches and their two-dimensional projections (which show scale-invariant behavior for all temperatures), we uncover two universality classes with different exponents (an ordinary BTW class, and SOC$_{T=infty}$), along with a tricritical point (at $T_c$, the critical temperature of the host) between them. The transition between these two criticalities is induced by the transition in the support. The SOC$_{T=infty}$ universality class is characterized by the exponent of the avalanche size distribution $tau^{T=infty}=1.27pm 0.03$, consistent with the exponent of the size distribution of the Barkhausen avalanches in amorphous ferromagnets (Phys. Rev. L 84, 4705 (2000)). The tricritical point is characterized by its own critical exponents. In addition to the avalanche exponents, some other quantities like the average height, the spanning avalanche probability (SAP) and the average coordination number of the Ising clusters change significantly the behavior at this point, and also exhibit power-law behavior in terms of $epsilonequiv frac{T-T_c}{T_c}$, defining further critical exponents. Importantly the finite size analysis for the activity (number of topplings) per site shows the scaling behavior with exponents $beta=0.19pm 0.02$ and $ u=0.75pm 0.05$. A similar behavior is also seen for the SAP and the average avalanche height. The fractal dimension of the external perimeter of the two-dimensional projections of avalanches is shown to be robust against $T$ with the numerical value $D_f=1.25pm 0.01$.
We introduce a model of negotiation dynamics whose aim is that of mimicking the mechanisms leading to opinion and convention formation in a population of individuals. The negotiation process, as opposed to ``herding-like or ``bounded confidence drive
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbour spin interaction in one spatial dimension on the non-equilibrium dynamical phase diagram of the ful
The extraction of membrane tubes by molecular motors is known to play an important role for the transport properties of eukaryotic cells. By studying a generic class of models for the tube extraction, we discover a rich phase diagram. In particular w
We introduce a new Forward-Flux Sampling in Time (FFST) algorithm to efficiently measure transition times in rare-event processes in non-equilibrium systems, and apply it to study the first-order (discontinuous) kinetic transition in the Ziff-Gulari-
We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux, w