ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical low-rank approximation of matrix differential equations

86   0   0.0 ( 0 )
 نشر من قبل Chiara Piazzola
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficient numerical integration of large-scale matrix differential equations is a topical problem in numerical analysis and of great importance in many applications. Standard numerical methods applied to such problems require an unduly amount of computing time and memory, in general. Based on a dynamical low-rank approximation of the solution, a new splitting integrator is proposed for a quite general class of stiff matrix differential equations. This class comprises differential Lyapunov and differential Riccati equations that arise from spatial discretizations of partial differential equations. The proposed integrator handles stiffness in an efficient way, and it preserves the symmetry and positive semidefiniteness of solutions of differential Lyapunov equations. Numerical examples that illustrate the benefits of this new method are given. In particular, numerical results for the efficient simulation of the weather phenomenon El Ni~no are presented.

قيم البحث

اقرأ أيضاً

We propose a numerical integrator for determining low-rank approximations to solutions of large-scale matrix differential equations. The considered differential equations are semilinear and stiff. Our method consists of first splitting the differenti al equation into a stiff and a non-stiff part, respectively, and then following a dynamical low-rank approach. We conduct an error analysis of the proposed procedure, which is independent of the stiffness and robust with respect to possibly small singular values in the approximation matrix. Following the proposed method, we show how to obtain low-rank approximations for differential Lyapunov and for differential Riccati equations. Our theory is illustrated by numerical experiments.
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim plicity of B is characterized as follows. - Binary r-Means: Matrix B has at most r different columns. This problem is known to be NP-complete already for r=2. We show that the problem is solvable in time 2^{O(klog k)}cdot(nm)^{O(1)} and thus is fixed-parameter tractable parameterized by k. We prove that the problem admits a polynomial kernel when parameterized by r and k but it has no polynomial kernel when parameterized by k only unless NPsubseteq coNP/poly. We also complement these result by showing that when being parameterized by r and k, the problem admits an algorithm of running time 2^{O(rcdot sqrt{klog{(k+r)}})}(nm)^{O(1)}, which is subexponential in k for rin O(k^{1/2 -epsilon}) for any epsilon>0. - Low GF(2)-Rank Approximation: Matrix B is of GF(2)-rank at most r. This problem is known to be NP-complete already for r=1. It also known to be W[1]-hard when parameterized by k. Interestingly, when parameterized by r and k, the problem is not only fixed-parameter tractable, but it is solvable in time 2^{O(r^{ 3/2}cdot sqrt{klog{k}})}(nm)^{O(1)}, which is subexponential in k. - Low Boolean-Rank Approximation: Matrix B is of Boolean rank at most r. The problem is known to be NP-complete for k=0 as well as for r=1. We show that it is solvable in subexponential in k time 2^{O(r2^rcdot sqrt{klog k})}(nm)^{O(1)}.
57 - E. Defez 2006
This paper presents the non-linear generalization of a previous work on matrix differential models. It focusses on the construction of approximate solutions of first-order matrix differential equations Y(x)=f(x,Y(x)) using matrix-cubic splines. An es timation of the approximation error, an algorithm for its implementation and illustrative examples for Sylvester and Riccati matrix differential equations are given.
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t he first linear time-approximation schemes for a number of well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of binary matrices. Among the problems solvable by our approach are textsc{Low GF(2)-Rank Approximation}, textsc{Low Boolean-Rank Approximation}, and vario
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential perspective, most notably the absence of explicit conditioning formula. This paper extends earlier work on linear PDEs to a general class of initial value problems specified by nonlinear PDEs, motivated by problems for which evaluations of the right-hand-side, initial conditions, or boundary conditions of the PDE have a high computational cost. The proposed method can be viewed as exact Bayesian inference under an approximate likelihood, which is based on discretisation of the nonlinear differential operator. Proof-of-concept experimental results demonstrate that meaningful probabilistic uncertainty quantification for the unknown solution of the PDE can be performed, while controlling the number of times the right-hand-side, initial and boundary conditions are evaluated. A suitable prior model for the solution of the PDE is identified using novel theoretical analysis of the sample path properties of Mat{e}rn processes, which may be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا