ﻻ يوجد ملخص باللغة العربية
We propose a numerical integrator for determining low-rank approximations to solutions of large-scale matrix differential equations. The considered differential equations are semilinear and stiff. Our method consists of first splitting the differential equation into a stiff and a non-stiff part, respectively, and then following a dynamical low-rank approach. We conduct an error analysis of the proposed procedure, which is independent of the stiffness and robust with respect to possibly small singular values in the approximation matrix. Following the proposed method, we show how to obtain low-rank approximations for differential Lyapunov and for differential Riccati equations. Our theory is illustrated by numerical experiments.
The efficient numerical integration of large-scale matrix differential equations is a topical problem in numerical analysis and of great importance in many applications. Standard numerical methods applied to such problems require an unduly amount of
Neural Ordinary Differential Equations (ODE) are a promising approach to learn dynamic models from time-series data in science and engineering applications. This work aims at learning Neural ODE for stiff systems, which are usually raised from chemic
We present a convergence proof for higher order implementations of the projective integration method (PI) for a class of deterministic multi-scale systems in which fast variables quickly settle on a slow manifold. The error is shown to contain contri
We consider differential Lyapunov and Riccati equations, and generalize
The Vlasov--Maxwell equations are used for the kinetic description of magnetized plasmas. As they are posed in an up to 3+3 dimensional phase space, solving this problem is extremely expensive from a computational point of view. In this paper, we exp