ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Solutions of Matrix Differential Models using Cubic Matrix Splines II

58   0   0.0 ( 0 )
 نشر من قبل Michael Tung M.
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف E. Defez




اسأل ChatGPT حول البحث

This paper presents the non-linear generalization of a previous work on matrix differential models. It focusses on the construction of approximate solutions of first-order matrix differential equations Y(x)=f(x,Y(x)) using matrix-cubic splines. An estimation of the approximation error, an algorithm for its implementation and illustrative examples for Sylvester and Riccati matrix differential equations are given.

قيم البحث

اقرأ أيضاً

59 - M.M. Tung , L. Soler , E. Defez 2007
We discuss the direct use of cubic-matrix splines to obtain continuous approximations to the unique solution of matrix models of the type $Y(x) = f(x,Y(x))$. For numerical illustration, an estimation of the approximation error, an algorithm for its implementation, and an example are given.
The efficient numerical integration of large-scale matrix differential equations is a topical problem in numerical analysis and of great importance in many applications. Standard numerical methods applied to such problems require an unduly amount of computing time and memory, in general. Based on a dynamical low-rank approximation of the solution, a new splitting integrator is proposed for a quite general class of stiff matrix differential equations. This class comprises differential Lyapunov and differential Riccati equations that arise from spatial discretizations of partial differential equations. The proposed integrator handles stiffness in an efficient way, and it preserves the symmetry and positive semidefiniteness of solutions of differential Lyapunov equations. Numerical examples that illustrate the benefits of this new method are given. In particular, numerical results for the efficient simulation of the weather phenomenon El Ni~no are presented.
We consider the application of implicit and linearly implicit (Rosenbrock-type) peer methods to matrix-valued ordinary differential equations. In particular the differential Riccati equation (DRE) is investigated. For the Rosenbrock-type schemes, a r eformulation capable of avoiding a number of Jacobian applications is developed that, in the autonomous case, reduces the computational complexity of the algorithms. Dealing with large-scale problems, an efficient implementation based on low-rank symmetric indefinite factorizations is presented. The performance of both peer approaches up to order 4 is compared to existing implicit time integration schemes for matrix-valued differential equations.
We propose a numerical integrator for determining low-rank approximations to solutions of large-scale matrix differential equations. The considered differential equations are semilinear and stiff. Our method consists of first splitting the differenti al equation into a stiff and a non-stiff part, respectively, and then following a dynamical low-rank approach. We conduct an error analysis of the proposed procedure, which is independent of the stiffness and robust with respect to possibly small singular values in the approximation matrix. Following the proposed method, we show how to obtain low-rank approximations for differential Lyapunov and for differential Riccati equations. Our theory is illustrated by numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا