ﻻ يوجد ملخص باللغة العربية
A fundamental result of classical electromagnetism is that Maxwells equations imply that electric charge is locally conserved. Here we show the converse: Local charge conservation implies the local existence of fields satisfying Maxwells equations. This holds true for any conserved quantity satisfying a continuity equation. It is obtained by means of a strong form of the Poincare lemma presented here that states: Divergence-free multivector fields locally possess curl-free antiderivatives on flat manifolds. The above converse is an application of this lemma in the case of divergence-free vector fields in spacetime. We also provide conditions under which the result generalizes to curved manifolds.
In the first sections of this article, we discuss two variations on Maxwells equations that have been introduced in earlier work--a class of nonlinear Maxwell theories with well-defined Galilean limits (and correspondingly generalized Yang-Mills equa
This paper provides a view of Maxwells equations from the perspective of complex variables. The study is made through complex differential forms and the Hodge star operator in $mathbb{C}^2$ with respect to the Euclidean and the Minkowski metrics. It
Let $V(t) = e^{tG_b},: t geq 0,$ be the semigroup generated by Maxwells equations in an exterior domain $Omega subset {mathbb R}^3$ with dissipative boundary condition $E_{tan}- gamma(x) ( u wedge B_{tan}) = 0, gamma(x) > 0, forall x in Gamma = parti
When a measurement is made on a system that is not in an eigenstate of the measured observable, it is often assumed that some conservation law has been violated. Discussions of the effect of measurements on conserved quantities often overlook the pos
Conserved quantities are crucial in quantum physics. Here we discuss a general scenario of Hamiltonians. All the Hamiltonians within this scenario share a common conserved quantity form. For unitary parametrization processes, the characteristic opera