ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust Emission from Unobscured Active Galactic Nuclei

235   0   0.0 ( 0 )
 نشر من قبل Grant Thompson
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use mid-infrared spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher-luminosity quasar counterparts. Silicate dust reprocessing dominates the mid-infrared spectra, and we generally measure the 10 and 18 micron spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring ``torus of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies bolometric luminosity attributable to stars decreases with AGN luminosity.



قيم البحث

اقرأ أيضاً

223 - J. F. Radcliffe 2021
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this cla ss is known as radio-loud. A substantial fraction, the so-called radio-quiet AGN population, displays intermediate or weak radio emission. However, an appreciable fraction of strong X-rays emitting AGN are characterized by the absence of radio emission, down to an upper limit of about $10^{-7}$ times the luminosity of the most powerful radio-loud AGN. We wish to address the nature of these - seemingly radio-silent - X-ray-luminous AGN and their host galaxies: is there any radio emission, and if so, where does it originate? Focusing on the GOODS-N field, we examine the nature of these objects employing stacking techniques on ultra-deep radio data obtained with the JVLA. We combine these radio data with Spitzer far-infrared data. We establish the absence, or totally insignificant contribution of jet-driven radio-emission in roughly half of the otherwise normal population of X-ray luminous AGN, which appear to reside in normal star-forming galaxies. We conclude that AGN- or jet-driven radio emission is simply a mechanism that may be at work or may be dormant in galaxies with actively accreting black holes. The latter can be classified as radio-silent AGN.
Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type $1 to 1.2/1.5 to 1.8/1.9 to 2$ as the accretion rate onto the central black hole is decreasing. This spe ctral evolution is controlled, at least in part, by the parameter $L_{rm bol}/M^{2/3}$, where $L_{rm bol}$ is the AGN bolometric luminosity and $M$ is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.
We use new X-ray data obtained with the Nuclear Spectroscopic Telescope Array (NuSTAR), near-infrared (NIR) fluxes, and mid-infrared (MIR) spectra of a sample of 24 unobscured type 1 active galactic nuclei (AGN) to study the correlation between vario us hard X-ray bands between 3 and 80 keV and the infrared (IR) emission. The IR to X-ray correlation spectrum (IRXCS) shows a maximum at ~15-20 micron, coincident with the peak of the AGN contribution to the MIR spectra of the majority of the sample. There is also a NIR correlation peak at ~2 micron, which we associate with the NIR bump observed in some type 1 AGN at ~1-5 micron and is likely produced by nuclear hot dust emission. The IRXCS shows practically the same behaviour in all the X-ray bands considered, indicating a common origin for all of them. We finally evaluated correlations between the X-ray luminosities and various MIR emission lines. All the lines show a good correlation with the hard X-rays (rho>0.7), but we do not find the expected correlation between their ionization potentials and the strength of the IRXCS.
107 - D. Asmus , S. F. Honig , P. Gandhi 2016
Recent mid-infrared (MIR) interferometric observations showed in few active galactic nuclei (AGN) that the bulk of the infrared emission originates from the polar region above the putative torus, where only little dust should be present. Here, we inv estigate whether such strong polar dust emission is common in AGN. Out of 149 Seyferts in the MIR atlas of local AGN (Asmus et al.), 21 show extended MIR emission on single dish images. In 18 objects, the extended MIR emission aligns with the system axis position angle, established by [OIII], radio, polarisation and maser based position angle measurements. The relative amount of resolved MIR emission is at least 40 per cent and scales with the [OIV] fluxes implying a strong connection between the extended continuum and [OIV] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGN. The current low detection rate of polar dust in the AGN of the MIR atlas is explained by the lack of sufficient high quality MIR data and the requirement for the orientation, NLR strength and distance of the AGN. The James-Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGN.
In order to better understand how active galactic nuclei (AGN) effect the interstellar media of their host galaxies, we perform a meta-analysis of the CO emission for a sample of $z=0.01-4$ galaxies from the literature with existing CO detections and well-constrained AGN contributions to the infrared (67 galaxies). Using either Spitzer/IRS mid-IR spectroscopy or Spitzer+Herschel colors we determine the fraction of the infrared luminosity in each galaxy that can be attributed to heating by the AGN or stars. We calculate new average CO spectral line ratios (primarily from Carilli & Walter 2013) to uniformly scale the higher-$J$ CO detections to the ground state and accurately determine our samples molecular gas masses. We do not find significant differences in the gas depletion timescales/star formation efficiencies (SFEs) as a function of the mid-infrared AGN strength ($f_{rm AGN}({rm MIR})$ or $L_{rm IR} ({rm AGN})$), which indicates that the presence of an IR-bright AGN is not a sufficient sign-post of galaxy quenching. We also find that the dust-to-gas ratio is consistent for all sources, regardless of AGN emission, redshift, or $L_{rm IR}$, indicating that dust is likely a reliable tracer of gas mass for massive dusty galaxies (albeit with a large degree of scatter). Lastly, if we classify galaxies as either AGN or star formation dominated, we do not find a robust statistically significant difference between their CO excitation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا