ﻻ يوجد ملخص باللغة العربية
We have investigated the chiral charge-density wave (CDW) in $1T$-VSe$_2$ using scanning tunneling microscopy (STM) measurements and optical polarimetry measurements. With the STM mesurements, we revealed that the CDW intensities along each triple-$q$ directions are different. Thus the rotational symmetry of $1T$-VSe$_2$ is lower than that in typical two-dimentional triple-$q$ CDWs. We found that the CDW peaks form a kagome lattice rather than a triangular lattice. The Friedel oscillations have the chirality and the periodicity reflected properties of the background CDW. With the optical measurements in $1T$-VSe$_2$, we also observed a lower rotational symmetry with the polarization dependence of the transient reflectivity variation, which is consistent with the STM result on a microscopic scale. Both $1T$-TiSe$_2$ and $1T$-VSe$_2$ show chiral CDWs, which implies that such waves are usual for CDWs with the condition $H_mathrm{CDW} equiv q_{1}cdot(q_{2} times q_{3}) eq0$.
We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate struc
The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsi
We report temperature-dependent transport and x-ray diffraction measurements of the influence of Ti hole doping on the charge density wave (CDW) in 1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace impurities eliminate the low-tem
Thinning crystalline materials to two dimensions (2D) creates a rich playground for electronic phases, including charge, spin, superconducting and topological order. Bulk materials hosting charge density waves (CDWs), when reduced to ultrathin films,
The dynamical properties of single crystal 1T-TaS$_{2}$ are investigated both in commensurate charge density wave state (CCDW state) and hidden charge density wave state (HCDW state). We develop a useful criterion in time-domain transmission terahert