ﻻ يوجد ملخص باللغة العربية
Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe$_2$, which shows a ($sqrt7 times sqrt3$) CDW in contrast to the (4 $times$ 4) CDW for the layers in bulk VSe$_2$. Angle-resolved photoemission spectroscopy (ARPES) from the single layer shows a sizable ($sqrt7 times sqrt3$) CDW gap of $sim$100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit.
How magnetism emerges in low-dimensional materials such as transition metal dichalcogenides at the monolayer limit is still an open question. Herein, we present a comprehensive study of the magnetic properties of single crystal and monolayer VSe$_{2}
The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsi
Density functional theory and density functional perturbation theory are used to investigate the electronic and vibrational properties of TiS$_2$. Within the local density approximation the material is a semi-metal both in the bulk and in the monolay
The two-dimensional topological insulators (2DTI) host a full gap in the bulk band, induced by spin-orbit coupling (SOC) effect, together with the topologically protected gapless edge states. However, the SOC-induced gap is usually small, and it is c
Charge density waves (CDWs) are understood in great details in one dimension, but they remain largely enigmatic in two dimensional systems. In particular, numerous aspects of the associated energy gap and the formation mechanism are not fully underst