ترغب بنشر مسار تعليمي؟ اضغط هنا

Faster-than-Nyquist Non-Orthogonal Frequency-Division Multiplexing for Visible Light Communications

268   0   0.0 ( 0 )
 نشر من قبل Ji Zhou Mr.
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a faster-than-Nyquist (FTN) non-orthogonal frequency-division multiplexing (NOFDM) scheme for visible light communications (VLC) where the multiplexing/demultiplexing employs the inverse fractional cosine transform (IFrCT)/FrCT. Different to the common fractional Fourier transform-based NOFDM (FrFT-NOFDM) signal, FrCT-based NOFDM (FrCT-NOFDM) signal is real-valued which can be directly applied to the VLC systems without the expensive upconversion. Thus, FrCT-NOFDM is more suitable for the cost-sensitive VLC systems. Meanwhile, under the same transmission rate, FrCT-NOFDM signal occupies smaller bandwidth compared to OFDM signal. When the bandwidth compression factor $alpha$ is set to $0.8$, $20%$ bandwidth saving can be obtained. Therefore, FrCT-NOFDM has higher spectral efficiency and suffers less high-frequency distortion compared to OFDM, which benefits the bandwidth-limited VLC systems. As the simulation results show, bit error rate (BER) performance of FrCT-NOFDM with $alpha$ of $0.9$ or $0.8$ is better than that of OFDM. Moreover, FrCT-NOFDM has a superior security performance. In conclusion, FrCT-NOFDM shows great potential for application in the future VLC systems.



قيم البحث

اقرأ أيضاً

Faster-than-Nyquist (FTN) signal achieves higher spectral efficiency and capacity compared to Nyquist signal due to its smaller pulse interval or narrower subcarrier spacing. Shannon limit typically defines the upper-limit capacity of Nyquist signal. To the best of our knowledge, the mathematical expression for the capacity limit of FTN non-orthogonal frequency-division multiplexing (NOFDM) signal is first demonstrated in this paper. The mathematical expression shows that FTN NOFDM signal has the potential to achieve a higher capacity limit compared to Nyquist signal. In this paper, we demonstrate the principle of FTN NOFDM by taking fractional cosine transform-based NOFDM (FrCT-NOFDM) for instance. FrCT-NOFDM is first proposed and implemented by both simulation and experiment. When the bandwidth compression factor $alpha$ is set to $0.8$ in FrCT-NOFDM, the subcarrier spacing is equal to $40%$ of the symbol rate per subcarrier, thus the transmission rate is about $25%$ faster than Nyquist rate. FTN NOFDM with higher capacity would be promising in the future communication systems, especially in the bandwidth-limited applications.
Ultra-reliable low-latency communication (URLLC) requires short packets of data transmission. It is known that when the packet length becomes short, the achievable rate is subject to a penalty when compared to the channel capacity. In this paper, we propose to use faster-than-Nyquist (FTN) signaling to compensate for the achievable rate loss of short packet communications. We investigate the performance of a combination of a low complexity detector of FTN signaling used with nonbinary low-density parity-check (NB-LDPC) codes that is suitable for low-latency and short block length requirements of URLLC systems. Our investigation shows that such combination of low-complexity FTN signaling detection and NB-LDPC codes outperforms the use of close-to-optimal FTN signaling detectors with LDPC codes in terms of error rate performance and also has a considerably lower computational complexity.
The main limitation of visible light communication (VLC) is the narrow modulation bandwidth, which reduces the achievable data rates. In this paper, we apply the non-orthogonal multiple access (NOMA) scheme to enhance the achievable throughput in hig h-rate VLC downlink networks. We first propose a novel gain ratio power allocation (GRPA) strategy that takes into account the users channel conditions to ensure efficient and fair power allocation. Our results indicate that GRPA significantly enhances system performance compared to the static power allocation. We also study the effect of tuning the transmission angles of the light emitting diodes (LEDs) and the field of views (FOVs) of the receivers, and demonstrate that these parameters can offer new degrees of freedom to boost NOMA performance. Simulation results reveal that NOMA is a promising multiple access scheme for the downlink of VLC networks.
Visible light communications (VLC) have been recently proposed as a promising and efficient solution to indoor ubiquitous broadband connectivity. In this paper, non-orthogonal multiple access, which has been recently proposed as an effective scheme f or fifth generation (5G) wireless networks, is considered in the context of VLC systems, under different channel uncertainty models. To this end, we first derive a novel closed-form expression for the bit-error-rate (BER) under perfect channel state information (CSI). Capitalizing on this, we quantify the effect of noisy and outdated CSI by deriving a simple approximated expression for the former and a tight upper bound for the latter. The offered results are corroborated by respective results from extensive Monte Carlo simulations and are used to provide useful insights on the effect of imperfect CSI knowledge on the system performance. It was shown that, while noisy CSI leads to slight degradation in the BER performance, outdated CSI can cause detrimental performance degradation if the order of the users channel gains change as a result of mobility
The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as optical- non-orthogonal multiple access (O-NOMA), which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا