ﻻ يوجد ملخص باللغة العربية
Visible light communications (VLC) have been recently proposed as a promising and efficient solution to indoor ubiquitous broadband connectivity. In this paper, non-orthogonal multiple access, which has been recently proposed as an effective scheme for fifth generation (5G) wireless networks, is considered in the context of VLC systems, under different channel uncertainty models. To this end, we first derive a novel closed-form expression for the bit-error-rate (BER) under perfect channel state information (CSI). Capitalizing on this, we quantify the effect of noisy and outdated CSI by deriving a simple approximated expression for the former and a tight upper bound for the latter. The offered results are corroborated by respective results from extensive Monte Carlo simulations and are used to provide useful insights on the effect of imperfect CSI knowledge on the system performance. It was shown that, while noisy CSI leads to slight degradation in the BER performance, outdated CSI can cause detrimental performance degradation if the order of the users channel gains change as a result of mobility
The main limitation of visible light communication (VLC) is the narrow modulation bandwidth, which reduces the achievable data rates. In this paper, we apply the non-orthogonal multiple access (NOMA) scheme to enhance the achievable throughput in hig
The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards
This paper proposes a new design of non-orthogonal multiple access (NOMA) under secrecy considerations. We focus on a NOMA system where a transmitter sends confidential messages to multiple users in the presence of an external eavesdropper. The optim
In this paper, we present a finite-block-length comparison between the orthogonal multiple access (OMA) scheme and the non-orthogonal multiple access (NOMA) for the uplink channel. First, we consider the Gaussian channel, and derive the closed form e
This paper investigates the impact of physical layer secrecy on the performance of a unified non-orthogonal multiple access (NOMA) framework, where both external and internal eavesdropping scenarios are examined. The spatial locations of legitimate u