ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Non-Orthogonal Multiple Access for Visible Light Communication

170   0   0.0 ( 0 )
 نشر من قبل Hanaa Marshoud
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as optical- non-orthogonal multiple access (O-NOMA), which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems.

قيم البحث

اقرأ أيضاً

The main limitation of visible light communication (VLC) is the narrow modulation bandwidth, which reduces the achievable data rates. In this paper, we apply the non-orthogonal multiple access (NOMA) scheme to enhance the achievable throughput in hig h-rate VLC downlink networks. We first propose a novel gain ratio power allocation (GRPA) strategy that takes into account the users channel conditions to ensure efficient and fair power allocation. Our results indicate that GRPA significantly enhances system performance compared to the static power allocation. We also study the effect of tuning the transmission angles of the light emitting diodes (LEDs) and the field of views (FOVs) of the receivers, and demonstrate that these parameters can offer new degrees of freedom to boost NOMA performance. Simulation results reveal that NOMA is a promising multiple access scheme for the downlink of VLC networks.
Visible light communications (VLC) have been recently proposed as a promising and efficient solution to indoor ubiquitous broadband connectivity. In this paper, non-orthogonal multiple access, which has been recently proposed as an effective scheme f or fifth generation (5G) wireless networks, is considered in the context of VLC systems, under different channel uncertainty models. To this end, we first derive a novel closed-form expression for the bit-error-rate (BER) under perfect channel state information (CSI). Capitalizing on this, we quantify the effect of noisy and outdated CSI by deriving a simple approximated expression for the former and a tight upper bound for the latter. The offered results are corroborated by respective results from extensive Monte Carlo simulations and are used to provide useful insights on the effect of imperfect CSI knowledge on the system performance. It was shown that, while noisy CSI leads to slight degradation in the BER performance, outdated CSI can cause detrimental performance degradation if the order of the users channel gains change as a result of mobility
This paper aims to provide a comprehensive solution for the design, analysis, and optimization of a multiple-antenna non-orthogonal multiple access (NOMA) system for multiuser downlink communication with both time duplex division (TDD) and frequency duplex division (FDD) modes. First, we design a new framework for multiple-antenna NOMA, including user clustering, channel state information (CSI) acquisition, superposition coding, transmit beamforming, and successive interference cancellation (SIC). Then, we analyze the performance of the considered system, and derive exact closed-form expressions for average transmission rates in terms of transmit power, CSI accuracy, transmission mode, and channel conditions. For further enhancing the system performance, we optimize three key parameters, i.e., transmit power, feedback bits, and transmission mode. Especially, we propose a low-complexity joint optimization scheme, so as to fully exploit the potential of multiple-antenna techniques in NOMA. Moreover, through asymptotic analysis, we reveal the impact of system parameters on average transmission rates, and hence present some guidelines on the design of multiple-antenna NOMA. Finally, simulation results validate our theoretical analysis, and show that a substantial performance gain can be obtained over traditional orthogonal multiple access (OMA) technology under practical conditions.
Non-orthogonal multiple access (NOMA) is one of the key techniques to address the high spectral efficiency and massive connectivity requirements for the fifth generation (5G) wireless system. To efficiently realize NOMA, we propose a joint design fra mework combining the polar coding and the NOMA transmission, which deeply mines the generalized polarization effect among the users. In this polar coded NOMA (PC-NOMA) framework, the original NOMA channel is decomposed into multiple bit polarized channels by using a three-stage channel transform, that is, user$to$signal$to$bit partitions. Specifically, for the first-stage channel transform, we design two schemes, namely sequential user partition (SUP) and parallel user partition (PUP). For the SUP, a joint successive cancellation detecting and decoding scheme is developed, and a search algorithm is proposed to schedule the NOMA detecting order which improves the system performance by enhanced polarization among the user synthesized channels. The worst-goes-first idea is employed in the scheduling strategy, and its theoretic performance is analyzed by using the polarization principle. For the PUP, a corresponding parallel detecting scheme is exploited to reduce the latency. The block error ratio performances over the additive white Gaussian noise channel and the Rayleigh fading channel indicate that the proposed PC-NOMA obviously outperforms the state-of-the-art turbo coded NOMA scheme due to the advantages of joint design between the polar coding and NOMA.
A new non-orthogonal multiple access scheme performing simultaneous transmission to multiple users characterized by different signal-to-noise ratios is proposed. Different users are multiplexed by storing their codewords into a multiplexing matrix ac cording to properly designed patterns and then mapping the columns of the matrix onto the symbols of a higher-order constellation. At the receiver, an interference cancellation algorithm is employed in order to achieve a higher spectral efficiency than orthogonal user multiplexing. Rate-Adaptive Constellation Expansion Multiple Access (RA-CEMA) is an alternative to conventional superposition coding as a solution for transmission on the degraded broadcast channel. It combines the benefits of an increased spectral efficiency with the advantages of reusing the coding and modulation schemes already used in contemporary communication systems, thereby facilitating its adoption in standards.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا