ﻻ يوجد ملخص باللغة العربية
Faster-than-Nyquist (FTN) signal achieves higher spectral efficiency and capacity compared to Nyquist signal due to its smaller pulse interval or narrower subcarrier spacing. Shannon limit typically defines the upper-limit capacity of Nyquist signal. To the best of our knowledge, the mathematical expression for the capacity limit of FTN non-orthogonal frequency-division multiplexing (NOFDM) signal is first demonstrated in this paper. The mathematical expression shows that FTN NOFDM signal has the potential to achieve a higher capacity limit compared to Nyquist signal. In this paper, we demonstrate the principle of FTN NOFDM by taking fractional cosine transform-based NOFDM (FrCT-NOFDM) for instance. FrCT-NOFDM is first proposed and implemented by both simulation and experiment. When the bandwidth compression factor $alpha$ is set to $0.8$ in FrCT-NOFDM, the subcarrier spacing is equal to $40%$ of the symbol rate per subcarrier, thus the transmission rate is about $25%$ faster than Nyquist rate. FTN NOFDM with higher capacity would be promising in the future communication systems, especially in the bandwidth-limited applications.
In this paper, we propose a faster-than-Nyquist (FTN) non-orthogonal frequency-division multiplexing (NOFDM) scheme for visible light communications (VLC) where the multiplexing/demultiplexing employs the inverse fractional cosine transform (IFrCT)/F
Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal physical layer transmission technique to improve the spectral efficiency of future communication systems but at the expense of intersymbol-interference (ISI). In this paper, we investi
Ultra-reliable low-latency communication (URLLC) requires short packets of data transmission. It is known that when the packet length becomes short, the achievable rate is subject to a penalty when compared to the channel capacity. In this paper, we
A deep learning assisted sum-product detection algorithm (DL-SPDA) for faster-than-Nyquist (FTN) signaling is proposed in this paper. The proposed detection algorithm works on a modified factor graph which concatenates a neural network function node
A deep learning assisted sum-product detection algorithm (DL-SPA) for faster-than-Nyquist (FTN) signaling is proposed in this paper. The proposed detection algorithm concatenates a neural network to the variable nodes of the conventional factor graph