ﻻ يوجد ملخص باللغة العربية
In binary classification framework, we are interested in making cost sensitive label predictions in the presence of uniform/symmetric label noise. We first observe that $0$-$1$ Bayes classifiers are not (uniform) noise robust in cost sensitive setting. To circumvent this impossibility result, we present two schemes; unlike the existing methods, our schemes do not require noise rate. The first one uses $alpha$-weighted $gamma$-uneven margin squared loss function, $l_{alpha, usq}$, which can handle cost sensitivity arising due to domain requirement (using user given $alpha$) or class imbalance (by tuning $gamma$) or both. However, we observe that $l_{alpha, usq}$ Bayes classifiers are also not cost sensitive and noise robust. We show that regularized ERM of this loss function over the class of linear classifiers yields a cost sensitive uniform noise robust classifier as a solution of a system of linear equations. We also provide a performance bound for this classifier. The second scheme that we propose is a re-sampling based scheme that exploits the special structure of the uniform noise models and uses in-class probability $eta$ estimates. Our computational experiments on some UCI datasets with class imbalance show that classifiers of our two schemes are on par with the existing methods and in fact better in some cases w.r.t. Accuracy and Arithmetic Mean, without using/tuning noise rate. We also consider other cost sensitive performance measures viz., F measure and Weighted Cost for evaluation. As our re-sampling scheme requires estimates of $eta$, we provide a detailed comparative study of various $eta$ estimation methods on synthetic datasets, w.r.t. half a dozen evaluation criterion. Also, we provide understanding on the interpretation of cost parameters $alpha$ and $gamma$ using different synthetic data experiments.
Label space expansion for multi-label classification (MLC) is a methodology that encodes the original label vectors to higher dimensional codes before training and decodes the predicted codes back to the label vectors during testing. The methodology
Robustness to label noise is a critical property for weakly-supervised classifiers trained on massive datasets. Robustness to label noise is a critical property for weakly-supervised classifiers trained on massive datasets. In this paper, we first de
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each labels cost and predicting the smallest. On a new
In label-noise learning, textit{noise transition matrix}, denoting the probabilities that clean labels flip into noisy labels, plays a central role in building textit{statistically consistent classifiers}. Existing theories have shown that the transi
Learning with the textit{instance-dependent} label noise is challenging, because it is hard to model such real-world noise. Note that there are psychological and physiological evidences showing that we humans perceive instances by decomposing them in