ﻻ يوجد ملخص باللغة العربية
We explore oscillations of the solar $^8$B neutrinos in the Earth in detail. The relative excess of night $ u_e$ events (the Night-Day asymmetry) is computed as function of the neutrino energy and the nadir angle $eta$ of its trajectory. The finite energy resolution of the detector causes an important attenuation effect, while the layer-like structure of the Earth density leads to an interesting parametric suppression of the oscillations. Different features of the $eta-$ dependence encode information about the structure (such as density jumps) of the Earth density profile; thus measuring the $eta$ distribution allows the scanning of the interior of the Earth. We estimate the sensitivity of the DUNE experiment to such measurements. About 75 neutrino events are expected per day in 40 kt. For high values of $Delta m^2_{21}$ and $E_ u > $11 MeV, the corresponding D-N asymmetry is about 4% and can be measured with $15%$ accuracy after 5 years of data taking. The difference of the D-N asymmetry between high and low values of $Delta m^2_{21}$ can be measured at the $4sigma$ level. The relative excess of the $ u_e$ signal varies with the nadir angle up to 50%. DUNE may establish the existence of the dip in the $eta-$ distribution at the $(2 - 3) sigma$ level.
The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced
We explore in detail oscillations of the solar $^7$Be neutrinos in the matter of the Earth. The depth of oscillations is about $(0.1 - 0.2)%$ and the length $approx 30$ km. The period of the oscillatory modulations in the energy scale is comparable w
Adding right-handed neutrinos to the Standard Model is a natural and simple extension and is well motivated on both the theoretical and the experimental side. We extend the Standard Model by adding only one right-handed Majorana neutrino and study th
Light sterile neutrinos can be probed in a number of ways, including electroweak decays, cosmology and neutrino oscillation experiments. At long-baseline experiments, the neutral-current data is directly sensitive to the presence of light sterile neu
We propose to use the unique event topology and reconstruction capabilities of liquid argon time projection chambers to study sub-GeV atmospheric neutrinos. The detection of low energy recoiled protons in DUNE allows for a determination of the lepton