ﻻ يوجد ملخص باللغة العربية
Adding right-handed neutrinos to the Standard Model is a natural and simple extension and is well motivated on both the theoretical and the experimental side. We extend the Standard Model by adding only one right-handed Majorana neutrino and study the sensitivity of the Near Detector of the DUNE experiment to the new physics parameters, namely the mixing parameters $|U_{e 4}|^2$ and $|U_{mu 4}|^2$ and the mass $m_N$. The study relies on searches of the products of right-handed neutrino decays, which is possible thanks to an extremely intense beam and a state-of-the-art detection technology. This type of direct test is carried out with very few assumptions and in an almost-completely model-independent way, providing thus a strong result. A background analysis is also performed, simulating the detector performance to particle identification. It is found that the existing bounds in the MeV-range can be improved by one order of magnitude in different detection channels.
Next generation neutrino oscillation experiments like DUNE and T2HK are multi-purpose observatories, with a rich physics program beyond oscillation measurements. A special role is played by their near detector facilities, which are particularly well-
The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced
While the QCD axion is often considered to be necessarily light ($lesssim$ eV), recent work has opened a viable and interesting parameter space for heavy axions, which solve both the Strong CP and the axion Quality Problems. These well-motivated heav
We investigate the capability of the DUNE Near Detector (ND) to constrain Non Standard Interaction parameters (NSI) describing the production of neutrinos ($varepsilon_{alphabeta}^s$) and their detection ($varepsilon_{alphabeta}^d$). We show that the
The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this mon