ﻻ يوجد ملخص باللغة العربية
Light sterile neutrinos can be probed in a number of ways, including electroweak decays, cosmology and neutrino oscillation experiments. At long-baseline experiments, the neutral-current data is directly sensitive to the presence of light sterile neutrinos: once the active neutrinos have oscillated into a sterile state, a depletion in the neutral-current data sample is expected since they do not interact with the $Z$ boson. This channel offers a direct avenue to probe the mixing between a sterile neutrino and the tau neutrino, which remains largely unconstrained by current data. In this work, we study the potential of the DUNE experiment to constrain the mixing angle which parametrizes this mixing, $theta_{34}$, through the observation of neutral-current events at the far detector. We find that DUNE will be able to improve significantly over current constraints thanks to its large statistics and excellent discrimination between neutral- and charged-current events.
We investigate the potential for the Deep Underground Neutrino Experiment (DUNE) to probe the existence and effects of a fourth neutrino mass-eigenstate. We study the mixing of the fourth mass-eigenstate with the three active neutrinos of the Standar
Even though neutrino oscillations have been conclusively established, there are a few unanswered questions pertaining to leptonic Charge Parity violation (CPV), mass hierarchy (MH) and $theta_{23}$ octant degeneracy. Addressing these questions is of
Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $theta_{13}$ in the standard mixing
We present results from global fits to the available reactor antineutrino dataset, as of Fall 2019, to determine the global preference for a fourth, sterile neutrino. We have separately considered experiments that measure the integrated inverse-beta
We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and $735,mathrm{km}$ in a $ u_{mu}$-dominated beam with a peak energy of $3,mathrm{GeV}$. The data, from an exposure of $10.56times 10^{20},textr