ﻻ يوجد ملخص باللغة العربية
We propose to use the unique event topology and reconstruction capabilities of liquid argon time projection chambers to study sub-GeV atmospheric neutrinos. The detection of low energy recoiled protons in DUNE allows for a determination of the leptonic $CP$-violating phase independent from the accelerator neutrino measurement. Our findings indicate that this analysis can exclude several values of $delta_{CP}$ beyond the $3sigma$ level. Moreover, the determination of the sub-GeV atmospheric neutrino flux will have important consequences in the detection of diffuse supernova neutrinos and in dark matter experiments.
The simplest extension of the SM to account for the observed neutrino masses and mixings is the addition of at least two singlet fermions (or right-handed neutrinos). If their masses lie at or below the GeV scale, such new fermions would be produced
We study the CP violation in the deviation from the tri-bimaximal mixing (TBM) of neutrinos. We examine non-trivial relations among the mixing angles and the CP violating Dirac phase in the typical four cases of the deviation from the TBM. The first
We investigate the impact of light ($sim$ eV) sterile neutrinos in the long-baseline experiment T2K. We show that, within the 3+1 scheme, for mass-mixing parameters suggested by the short-baseline anomalies, the interference among the sterile and the
Flavour oscillations of sub-GeV atmospheric neutrinos and antineutrinos, traversing different distances inside the Earth, are a promising source of information on the leptonic CP phase $delta$. In that energy range, the oscillations are very fast, fa
We perform realistic simulations of the current and future long baseline experiments such as T2K, NO$ u$A, DUNE and T2HK in order to determine their ultimate potential in probing neutrino oscillation parameters. We quantify the potential of these exp