ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient photon echoes from donor-bound excitons in ZnO epitaxial layers

253   0   0.0 ( 0 )
 نشر من قبل Sergey Poltavtsev V.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coherent optical response from 140~nm and 65~nm thick ZnO epitaxial layers is studied using transient four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D$^0$X$_text{A}$) at temperature of 1.8~K we evaluate optical coherence times $T_2=33-50$~ps corresponding to homogeneous linewidths of $13-19~mu$eV, about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time $T_1=30-40$~ps, while pure dephasing is negligible in the studied high quality samples even for strong optical excitation. Temperature increase leads to a significant shortening of $T_2$ due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D$^0$X$_text{B}$) is significantly faster ($T_2=3.6$~ps) and governed by pure dephasing processes.

قيم البحث

اقرأ أيضاً

We present results of magneto-optical measurements and theoretical analysis of shallow bound exciton complexes in bulk ZnO. Polarization and angular dependencies of magneto-photoluminescence spectra at 5 T suggest that the upper valence band has $Gam ma_7$ symmetry. Nitrogen doping leads to the formation of an acceptor center that compensates shallow donors. This is confirmed by the observation of excitons bound to ionized donors in nitrogen doped ZnO. The strongest transition in the ZnO:N ($I_9$ transition) is associated with a donor bound exciton. This conclusion is based on its thermalization behavior in temperature-dependent magneto-transmission measurements and is supported by comparison of the thermalization properties of the $I_9$ and $I_4$ emission lines in temperature-dependent magneto-photoluminescence investigations.
We present Auger-electron-detected magnetic resonance (AEDMR) experiments on phosphorus donors in silicon, where the selective optical generation of donor-bound excitons is used for the electrical detection of the electron spin state. Because of the long dephasing times of the electron spins in isotopically purified $^{28}$Si, weak microwave fields are sufficient, which allow to realize broadband AEDMR in a commercial ESR resonator. Implementing Auger-electron-detected ENDOR, we further demonstrate the optically-assisted control of the nuclear spin under conditions where the hyperfine splitting is not resolved in the optical spectrum. Compared to previous studies, this significantly relaxes the requirements on the sample and the experimental setup, e.g. with respect to strain, isotopic purity and temperature. We show AEDMR of phosphorus donors in silicon with natural isotope composition, and discuss the feasibility of ENDOR measurements also in this system.
Transparent and conductive ZnO:Ga thin films are prepared by laser molecular-beam epitaxy. Their electron properties were investigated by the temperature-dependent Hall-effect technique. The 300-K carrier concentration and mobility were about $n_s si m 10^{16}$ cm$^{-3}$ and 440 cm$^{2}$/Vs, respectively. In the experimental `mobility vs concentration curve, unusual phenomenon was observed, i.e., mobilities at $n_s sim 5times$ 10$^{18}$ cm$^{-3}$ are significantly smaller than those at higher densities above $sim 10^{20}$ cm$^{-3}$. Several types of scattering centers including ionized donors and oxygen traps are considered to account for the observed dependence of the Hall mobility on carrier concentration. The scattering mechanism is explained in terms of inter-grain potential barriers and charged impurities. A comparison between theoretical results and experimental data is made.
The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emissi on lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (> 6 ${mu}$s) and polarization lifetimes (> 100 ns). Resonant excitation of the free inter- and intra-valley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellites photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.
We present polarization-resolved transient transmission measurements on multi-layer black phosphorus. Background free two-color pump-probe spectroscopy measurements are carried out on mechanically exfoliated black phosphorus flakes that have been tra nsferred to a large-bandgap, silicon carbide substrate. The blue-shifted pump pulse (780 nm) induces an increased transmission of the probe pulse (1560 nm) over a time scale commensurate with the measurement resolution (hundreds of fs). After the initial pump-induced transparency, the sign of the transient flips and a slower enhanced absorption is observed. This extended absorption is characterized by two relaxation time scales of 180 ps and 1.3 ns. The saturation peak is attributed to Pauli blocking while the extended absorption is ascribed to a Drude response of the pump-induced carriers. The anisotropic carrier mobility in the black phosphorus leads to different weights of the Drude absorption, depending on the probe polarization, which is readily observed in the amplitude of the pump-probe signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا