ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron nuclear double resonance with donor-bound excitons in silicon

265   0   0.0 ( 0 )
 نشر من قبل David Paul Franke
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Auger-electron-detected magnetic resonance (AEDMR) experiments on phosphorus donors in silicon, where the selective optical generation of donor-bound excitons is used for the electrical detection of the electron spin state. Because of the long dephasing times of the electron spins in isotopically purified $^{28}$Si, weak microwave fields are sufficient, which allow to realize broadband AEDMR in a commercial ESR resonator. Implementing Auger-electron-detected ENDOR, we further demonstrate the optically-assisted control of the nuclear spin under conditions where the hyperfine splitting is not resolved in the optical spectrum. Compared to previous studies, this significantly relaxes the requirements on the sample and the experimental setup, e.g. with respect to strain, isotopic purity and temperature. We show AEDMR of phosphorus donors in silicon with natural isotope composition, and discuss the feasibility of ENDOR measurements also in this system.

قيم البحث

اقرأ أيضاً

The coherent optical response from 140~nm and 65~nm thick ZnO epitaxial layers is studied using transient four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D$^0$X$_text{A}$) at temperature of 1.8~K we evaluate optical coherence times $T_2=33-50$~ps corresponding to homogeneous linewidths of $13-19~mu$eV, about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time $T_1=30-40$~ps, while pure dephasing is negligible in the studied high quality samples even for strong optical excitation. Temperature increase leads to a significant shortening of $T_2$ due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D$^0$X$_text{B}$) is significantly faster ($T_2=3.6$~ps) and governed by pure dephasing processes.
201 - P. London , , J. Scheuer 2013
We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decouplin g from the noisy spin-bath, which otherwise limits the detection sensitivity. As a proof-of-principle we: (I) observe coherent oscillations between the NV center and a weakly coupled nuclear spin, (II) demonstrate nuclear bath cooling which prolongs the coherence time of the NV sensor by more than a factor of five. Our results provide a route to nanometer scale magnetic resonance imaging, and novel quantum information processing protocols.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ~20 picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a significant step towards applications in mass-limited chemical analysis and single cell biology.
The electronic structure of the three-particle donor bound exciton (D$^0$X) in silicon is computed using a large-scale atomic orbital tight-binding method within the Hartree approximation. The calculations yield a transition energy close to the exper imentally measured value of 1150 meV in bulk, and show how the transition energy and transition probability can change with applied fields and proximity to surfaces, mimicking the conditions of realistic devices. The spin-resolved transition energy from a neutral donor state (D$^0$) to D$^0$X depends on the three-particle Coulomb energy, and the interface and electric field induced hyperfine splitting and heavy-hole-light-hole splitting. Although the Coulomb energy decreases as a result of Stark shift, the spatial separation of the electron and hole wavefunctions by the field also reduces the transition dipole. A bulk-like D$^0$X dissociates abruptly at a modest electric field, while a D$^0$X at a donor close to an interface undergoes a gradual ionization process. Our calculations take into account the full bandstructure of silicon and the full energy spectrum of the donor including spin directly in the atomic orbital basis and treat the three-particle Coulomb interaction self-consistently to provide quantitative guidance to experiments aiming to realize hybrid opto-electric techniques for addressing donor qubits.
The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emissi on lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (> 6 ${mu}$s) and polarization lifetimes (> 100 ns). Resonant excitation of the free inter- and intra-valley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellites photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا