ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic Donor-Bound Excitons in Ultraclean Monolayer Semiconductors

108   0   0.0 ( 0 )
 نشر من قبل Minhao He
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emission lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (> 6 ${mu}$s) and polarization lifetimes (> 100 ns). Resonant excitation of the free inter- and intra-valley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellites photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.



قيم البحث

اقرأ أيضاً

Monolayer and few-layer phosphorene are anisotropic quasi-two-dimensional (quasi-2D) van der Waals (vdW) semiconductors with a linear-dichroic light-matter interaction and a widely-tunable direct-band gap in the infrared frequency range. Despite rece nt theoretical predictions of strongly-bound excitons with unique properties, it remains experimentally challenging to probe the excitonic quasiparticles due to the severe oxidation during device fabrication. In this study, we report observation of strongly-bound excitons and trions with highly-anisotropic optical properties in intrinsic bilayer phosphorene, which are protected from oxidation by encapsulation with hexagonal boron nitride (hBN), in a field-effect transistor (FET) geometry. Reflection contrast and photoluminescence spectroscopy clearly reveal the linear-dichroic optical spectra from anisotropic excitons and trions in the hBN-encapsulated bilayer phosphorene. The optical resonances from the exciton Rydberg series indicate that the neutral exciton binding energy is over 100 meV even with the dielectric screening from hBN. The electrostatic injection of free holes enables an additional optical resonance from a positive trion (charged exciton) ~ 30 meV below the optical bandgap of the charge-neutral system. Our work shows exciting possibilities for monolayer and few-layer phosphorene as a platform to explore many-body physics and novel photonics and optoelectronics based on strongly-bound excitons with two-fold anisotropy.
We study photoluminescence (PL) spectra and exciton dynamics of MoS$_2$ monolayer (ML) grown by the chemical vapor deposition technique. In addition to the usual direct A-exciton line we observe a low-energy line of bound excitons dominating the PL s pectra at low temperatures. This line shows unusually strong redshift with increase in the temperature and submicrosecond time dynamics suggesting indirect nature of the corresponding transition. By monitoring temporal dynamics of exciton PL distribution in the ML plane we observe diffusive transport of A-excitons and measure the diffusion coefficient up to $40$~cm$^2$/s at elevated excitation powers. The bound exciton spatial distribution spreads over tens of microns in $sim 1$ $mu$s. However this spread is subdiffusive, characterized by a significant slowing down with time. The experimental findings are interpreted as a result of the interplay between the diffusion and Auger recombination of excitons.
68 - Ka Wai Lau , Calvin , Zhirui Gong 2018
We study the interface exciton at lateral type II heterojunctions of monolayer transition metal dichalcogenides (TMDs), where the electron and hole prefer to stay at complementary sides of the junction. We find that the 1D interface exciton has giant binding energy in the same order as 2D excitons in pristine monolayer TMDs although the effective radius (electron-hole seperation) of interface exciton is much larger than that of 2D excitons. The binding energy, exciton radius and optical dipole strongly depends on the band offset at the junction. The inter-valley coupling induced by the electron-hole Coulomb exchange interaction and the quantum confinement effect at interface of a closed triangular shape are also investigated. Small triangles realize 0D quantum dot confinement of excitons, and we find a transition from non-degenerate ground state to degenerate ones when the size of the triangle varies. Our findings may facilitate the implementation of the optoelectronic devices based on the lateral heterojunction structures in monolayer semiconductors.
Tightly bound excitons in monolayer semiconductors represent a versatile platform to study two-dimensional propagation of neutral quasiparticles. Their intrinsic properties, however, can be severely obscured by spatial energy fluctuations due to a hi gh sensitivity to the immediate environment. Here, we take advantage of the encapsulation of individual layers in hexagonal boron nitride to strongly suppress environmental disorder. Diffusion of excitons is then directly monitored using time- and spatially-resolved emission microscopy at ambient conditions. We consistently find very efficient propagation with linear diffusion coefficients up to 10,cm$^2$/s, corresponding to room temperature effective mobilities as high as 400,cm$^2$/Vs as well as a correlation between rapid diffusion and short population lifetime. At elevated densities we detect distinct signatures of many-particle interactions and consequences of strongly suppressed Auger-like exciton-exciton annihilation. A combination of analytical and numerical theoretical approaches is employed to provide pathways towards comprehensive understanding of the observed linear and non-linear propagation phenomena. We emphasize the role of dark exciton states and present a mechanism for diffusion facilitated by free electron hole plasma from entropy-ionized excitons.
71 - Kyrylo Greben 2019
We investigate an excitonic peak appearing in low-temperature photoluminescence of monolayer transition metal dichalcogenides (TMDCs), which is commonly associated with defects and disorder. First, to uncover the intrinsic origin of defect-related ex citons, we study their dependence on gate voltage, excitation power, and temperature in a prototypical TMDC monolayer, $MoS_2$. We show that the entire range of behaviors of defect-related excitons can be understood in terms of a simple model, where neutral excitons are bound to ionized donor levels, likely related to sulphur vacancies, with a density of $7cdot10^{11} cm^{-2}$. Second, to study the extrinsic origin of defect-related excitons, we controllably deposit oxygen molecules in-situ onto the surface of $MoS_2$ kept at cryogenic temperature. We find that in addition to trivial p-doping of $3cdot10^{12} cm^{-2}$, oxygen affects the formation of defect-related excitons by functionalizing the vacancy. Combined, our results uncover the origin of defect-related excitons, suggest a simple and conclusive approach to track the functionalization of TMDCs, benchmark device quality, and pave the way towards exciton engineering in hybrid organic-inorganic TMDC devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا