ﻻ يوجد ملخص باللغة العربية
Transparent and conductive ZnO:Ga thin films are prepared by laser molecular-beam epitaxy. Their electron properties were investigated by the temperature-dependent Hall-effect technique. The 300-K carrier concentration and mobility were about $n_s sim 10^{16}$ cm$^{-3}$ and 440 cm$^{2}$/Vs, respectively. In the experimental `mobility vs concentration curve, unusual phenomenon was observed, i.e., mobilities at $n_s sim 5times$ 10$^{18}$ cm$^{-3}$ are significantly smaller than those at higher densities above $sim 10^{20}$ cm$^{-3}$. Several types of scattering centers including ionized donors and oxygen traps are considered to account for the observed dependence of the Hall mobility on carrier concentration. The scattering mechanism is explained in terms of inter-grain potential barriers and charged impurities. A comparison between theoretical results and experimental data is made.
For applications to sensor design, the product nxmu of the electron density n and the mobility mu is a key parameter to be optimized for enhanced device sensitivity. We model the carrier mobility in a two dimensional electron gas (2DEG) layer develop
The coherent optical response from 140~nm and 65~nm thick ZnO epitaxial layers is studied using transient four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and
Perovskite titanates such as SrTiO$_{3}$ (STO) exhibit a wide range of important functional properties, including high electron mobility, ferroelectricity, and excellent photocatalytic performance. The wide optical band gap of titanates limits their
Epitaxy of ZnO layers on cubic GaP (111) substrates has been demonstrated using pulsed laser deposition. Out of plane and in-plane epitaxial relationship of ZnO layer with respect to GaP substrate determined using phi scans in high resolution X-ray d
A 2D electron gas system in an oxide heterostructure serves as an important playground for novel phenomena. Here, we show that, by using fractional delta-doping to control the interfaces composition in LaxSr1-xTiO3/SrTiO3 artificial oxide superlattic