ترغب بنشر مسار تعليمي؟ اضغط هنا

Contact-less characterizations of encapsulated graphene p-n junctions

101   0   0.0 ( 0 )
 نشر من قبل Vishal Ranjan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accessing intrinsic properties of a graphene device can be hindered by the influence of contact electrodes. Here, we capacitively couple graphene devices to superconducting resonant circuits and observe clear changes in the resonance- frequency and -widths originating from the internal charge dynamics of graphene. This allows us to extract the density of states and charge relaxation resistance in graphene p-n junctions without the need of electrical contacts. The presented characterizations pave a fast, sensitive and non-invasive measurement of graphene nanocircuits.



قيم البحث

اقرأ أيضاً

Using low-temperature high-magnetic-field scanning tunneling microscopy and spectroscopy (STM/STS), we systematically study a graphene quantum dot (GQD) defined by a circular graphene p-p junction. Inside the GQD, we observe a series of quasi-bound s tates arising from whispering-gallery-mode (WGM) confinement of the circular junction and directly visualize these quasi-bound states down to atomic dimensions. By applying a strong magnetic field, a large jump in energy of the quasi-bound states, which is about one-half the energy spacing between the quasi-bound states, is observed. Such a behavior results from turning on a {pi} Berry phase of massless Dirac fermions in graphene by a magnetic field. Moreover, our experiment demonstrates that a quasi-bound state splits into two peaks with an energy separation of about 26 meV when the Fermi level crosses the quasi-bound state, indicating that there are strong electron-electron interactions in the GQD.
Spatial separation of electrons and holes in graphene gives rise to existence of plasmon waves confined to the boundary region. Theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths sma ller than the size of charged domains plasmon dispersion is found to be omega ~ q^(1/4). Frequency, velocity and direction of propagation of guided plasmon modes can be easily controlled by external electric field. In the presence of magnetic field spectrum of additional gapless magnetoplasmon excitations is obtained. Our findings indicate that graphene is a promising material for nanoplasmonics.
We developed a multi-level lithography process to fabricate graphene p-n-p junctions with the novel geometry of contactless, suspended top gates. This fabrication procedure minimizes damage or doping to the single atomic layer, which is only exposed to conventional resists and developers. The process does not require special equipment for depositing gate dielectrics or releasing sacrificial layers, and is compatible with annealing procedures that improve device mobility. Using this technique, we fabricate graphene devices with suspended local top gates, where the creation of high quality graphene p-n-p junctions is confirmed by transport data at zero and high magnetic fields.
We investigate the electron transport through a graphene p-n junction under a perpendicular magnetic field. By using Landauar-Buttiker formalism combining with the non-equilibrium Green function method, the conductance is studied for the clean and di sordered samples. For the clean p-n junction, the conductance is quite small. In the presence of disorders, it is strongly enhanced and exhibits plateau structure at suitable range of disorders. Our numerical results show that the lowest plateau can survive for a very broad range of disorder strength, but the existence of high plateaus depends on system parameters and sometimes can not be formed at all. When the disorder is slightly outside of this disorder range, some conductance plateaus can still emerge with its value lower than the ideal value. These results are in excellent agreement with the recent experiment.
74 - J. Tang , M.T. Wei , A. Sharma 2020
We investigate the zero-bias behavior of Josephson junctions made of encapsulated graphene boron nitride heterostructures in the long ballistic junction regime. For temperatures down to 2.7K, the junctions appear non-hysteretic with respect to the sw itching and retrapping currents $I_C$ and $I_R$. A small non-zero resistance is observed even around zero bias current, and scales with temperature as dictated by the phase diffusion mechanism. By varying the graphene carrier concentration we are able to confirm that the observed phase diffusion mechanism follows the trend for an overdamped Josephson junction. This is in contrast with the majority of graphene-based junctions which are underdamped and shorted by the environment at high frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا