ﻻ يوجد ملخص باللغة العربية
We developed a multi-level lithography process to fabricate graphene p-n-p junctions with the novel geometry of contactless, suspended top gates. This fabrication procedure minimizes damage or doping to the single atomic layer, which is only exposed to conventional resists and developers. The process does not require special equipment for depositing gate dielectrics or releasing sacrificial layers, and is compatible with annealing procedures that improve device mobility. Using this technique, we fabricate graphene devices with suspended local top gates, where the creation of high quality graphene p-n-p junctions is confirmed by transport data at zero and high magnetic fields.
We have fabricated graphene devices with a top gate separated from the graphene layer by an air gap--a design which does not decrease the mobility of charge carriers under the gate. This gate is used to realise p-n-p structures where the conducting p
Spatial separation of electrons and holes in graphene gives rise to existence of plasmon waves confined to the boundary region. Theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths sma
Owing to a linear and gapless band structure and a tunability of the charge carrier type, graphene offers a unique system to investigate transport of Dirac Fermions at p-n junctions (PNJs). In a magnetic field, combination of quantum Hall physics and
Accessing intrinsic properties of a graphene device can be hindered by the influence of contact electrodes. Here, we capacitively couple graphene devices to superconducting resonant circuits and observe clear changes in the resonance- frequency and -
We investigate the electron transport through a graphene p-n junction under a perpendicular magnetic field. By using Landauar-Buttiker formalism combining with the non-equilibrium Green function method, the conductance is studied for the clean and di