ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning tunneling microscope characterizations of a circular graphene resonator realized with p-p junctions

112   0   0.0 ( 0 )
 نشر من قبل Lin He
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using low-temperature high-magnetic-field scanning tunneling microscopy and spectroscopy (STM/STS), we systematically study a graphene quantum dot (GQD) defined by a circular graphene p-p junction. Inside the GQD, we observe a series of quasi-bound states arising from whispering-gallery-mode (WGM) confinement of the circular junction and directly visualize these quasi-bound states down to atomic dimensions. By applying a strong magnetic field, a large jump in energy of the quasi-bound states, which is about one-half the energy spacing between the quasi-bound states, is observed. Such a behavior results from turning on a {pi} Berry phase of massless Dirac fermions in graphene by a magnetic field. Moreover, our experiment demonstrates that a quasi-bound state splits into two peaks with an energy separation of about 26 meV when the Fermi level crosses the quasi-bound state, indicating that there are strong electron-electron interactions in the GQD.



قيم البحث

اقرأ أيضاً

100 - V. Ranjan , S. Zihlmann , P. Makk 2017
Accessing intrinsic properties of a graphene device can be hindered by the influence of contact electrodes. Here, we capacitively couple graphene devices to superconducting resonant circuits and observe clear changes in the resonance- frequency and - widths originating from the internal charge dynamics of graphene. This allows us to extract the density of states and charge relaxation resistance in graphene p-n junctions without the need of electrical contacts. The presented characterizations pave a fast, sensitive and non-invasive measurement of graphene nanocircuits.
We developed a multi-level lithography process to fabricate graphene p-n-p junctions with the novel geometry of contactless, suspended top gates. This fabrication procedure minimizes damage or doping to the single atomic layer, which is only exposed to conventional resists and developers. The process does not require special equipment for depositing gate dielectrics or releasing sacrificial layers, and is compatible with annealing procedures that improve device mobility. Using this technique, we fabricate graphene devices with suspended local top gates, where the creation of high quality graphene p-n-p junctions is confirmed by transport data at zero and high magnetic fields.
82 - Songci Li , A. V. Andreev , 2016
We study the zero temperature conductance and magnetoconductance of ballistic textit{p-n} junctions in Weyl semimetals. Electron transport is mediated by Klein tunneling between textit{n}- and textit{p}- regions. The chiral anomaly that is realized i n Weyl semimetals plays a crucial role in the magnetoconductance of the junction. With the exception of field orientations where the angle between $mathbf{B}$ and the junction plane is small, magnetoconductance is positive and linear in $B$ at both weak and strong magnetic fields. In contrast, magnetoconductance in conventional textit{p-n} junctions is always negative.
We demonstrate high-frequency mechanical resonators in ballistic graphene p-n junctions. Fully suspended graphene devices with two bottom gates exhibit ballistic bipolar behavior after current annealing. We determine the graphene mass density and bui lt-in tension for different current annealing steps by comparing the measured mechanical resonant response to a simplified membrane model. We consistently find that after the last annealing step the mass density compares well with the expected density of pure graphene. In a graphene membrane with high built-in tension, but still of macroscopic size with dimensions 3 $times$ 1 $mu m^{2}$, a record resonance frequency of 1.17 GHz is observed after the final current annealing step. We further compare the resonance response measured in the unipolar with the one in the bipolar regime. Remarkably, the resonant signals are strongly enhanced in the bipolar regime. This enhancement is caused in part by the Fabry-Perot resonances that appear in the bipolar regime and possibly also by the photothermoelectric effect that can be very pronounced in graphene p-n junctions under microwave irradiation.
Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunnelling microscopy using a Greens Function formalism, and apply it to graphene. Sa mpling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. The spectral signatures of the Fourier transform of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of non-ideal graphene samples on dual-probe measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا