ﻻ يوجد ملخص باللغة العربية
It is well-known that the Pachner graph of $n$-vertex triangulated $2$-spheres is connected, i.e., each pair of $n$-vertex triangulated $2$-spheres can be turned into each other by a sequence of edge flips for each $ngeq 4$. In this article, we study various induced subgraphs of this graph. In particular, we prove that the subgraph of $n$-vertex flag $2$-spheres distinct from the double cone is still connected. In contrast, we show that the subgraph of $n$-vertex stacked $2$-spheres has at least as many connected components as there are trees on $lfloorfrac{n-5}{3}rfloor$ nodes with maximum node-degree at most four.
We present some enumerative and structural results for flag homology spheres. For a flag homology sphere $Delta$, we show that its $gamma$-vector $gamma^Delta=(1,gamma_1,gamma_2,ldots)$ satisfies: begin{align*} gamma_j=0,text{ for all } j>gamma_1,
A lamination of a graph embedded on a surface is a collection of pairwise disjoint non-contractible simple closed curves drawn on the graph. In the case when the surface is a sphere with three punctures (a.k.a. a pair of pants), we first identify the
The sequence $(x_n)_{ninmathbb N} = (2,5,15,51,187,dots)$ given by the rule $x_n=(2^n+1)(2^{n-1}+1)/3$ appears in several seemingly unrelated areas of mathematics. For example, $x_n$ is the density of a language of words of length $n$ with four diffe
Let $G$ be a graph of order $n(G)$ and vertex set $V(G)$. Given a set $Ssubseteq V(G)$, we define the external neighbourhood of $S$ as the set $N_e(S)$ of all vertices in $V(G)setminus S$ having at least one neighbour in $S$. The differential of $S$
A well-known theorem of Whitney states that a 3-connected planar graph admits an essentially unique embedding into the 2-sphere. We prove a 3-dimensional analogue: a simply-connected $2$-complex every link graph of which is 3-connected admits an esse