ﻻ يوجد ملخص باللغة العربية
A well-known theorem of Whitney states that a 3-connected planar graph admits an essentially unique embedding into the 2-sphere. We prove a 3-dimensional analogue: a simply-connected $2$-complex every link graph of which is 3-connected admits an essentially unique locally flat embedding into the 3-sphere, if it admits one at all. This can be thought of as a generalisation of the 3-dimensional Schoenflies theorem.
We classify the symmetric association schemes with faithful spherical embedding in 3-dimensional Euclidean space. Our result is based on previous research on primitive association schemes with $m_1 = 3$.
We provide a simple characterization of simplicial complexes on few vertices that embed into the $d$-sphere. Namely, a simplicial complex on $d+3$ vertices embeds into the $d$-sphere if and only if its non-faces do not form an intersecting family. As
Multitriangulations, and more generally subword complexes, yield a large family of simplicial complexes that are homeomorphic to spheres. Until now, all attempts to prove or disprove that they can be realized as convex polytopes faced major obstacles
We use rational formality of configuration spaces and the bar construction to study the cohomology of the space of braids in dimension four or greater. We provide a diagram complex for braids and a quasi-isomorphism to the de Rham cochains on the spa
The sequence $(x_n)_{ninmathbb N} = (2,5,15,51,187,dots)$ given by the rule $x_n=(2^n+1)(2^{n-1}+1)/3$ appears in several seemingly unrelated areas of mathematics. For example, $x_n$ is the density of a language of words of length $n$ with four diffe