ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending the photon energy coverage of an x-ray self-seeding FEL via the reverse taper enhanced harmonic generation technique

78   0   0.0 ( 0 )
 نشر من قبل Chao Feng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a simple method is proposed to extend the photon energy range of a soft x-ray self-seeding free-electron laser (FEL). A normal monochromator is first applied to purify the FEL spectrum and provide a coherent seeding signal. This coherent signal then interacts with the electron beam in the following reverse tapered undulator section to generate strong coherent microbunchings while maintain the good quality of the electron beam. After that, the pre-bunched electron beam is sent into the third undulator section which resonates at a target high harmonic of the seed to amplify the coherent radiation at shorter wavelength. Three dimensional simulations have been performed and the results demonstrate that the photon energy gap between 1.5 keV and 4.5 keV of the self-seeding scheme can be fully covered and 100 GW-level peak power can be achieved by using the proposed technique.

قيم البحث

اقرأ أيضاً

We study a self-seeded high-gain harmonic generation (HGHG) free-electron laser (FEL) scheme to extend the wavelength of a soft X-ray FEL. This scheme uses a regular self-seeding monochromator to generate a seed laser at the wavelength of 1.52 nm, fo llowed by a HGHG configuration to produce coherent, narrow-bandwidth harmonic radiations at the GW level. The 2nd and 3rd harmonic radiation are investigated with start-to-end simulations. Detailed studies on the FEL performance and shot-to-shot fluctuations are presented.
Cascading stages of seeded free electron laser (FEL) is a promising way to produce fully coherent X-ray radiations. We study a new approach to produce coherent hard X-rays by cascading the recently proposed phase-merging enhanced harmonic generation (PEHG). The scheme consists of one dogleg and two PEHG configurations, which may be one of the leading candidates for the extracted undulator branch in future X-ray FEL facilities. FEL physics studies show that such a scheme is feasible within the present technology and can provide high brightness X-ray radiation pulses with narrow bandwidth and fully coherence, and the radiated peak power at 1 angstrom wavelength converted from an initial 200 nm seed laser is over 2 GW.
We describe a new method to produce intensity stable, highly coherent, narrow-band x-ray pulses in self-seeded free electron (FEL) lasers. The approach uses an ultra-short electron beam to generate a single spike FEL pulse with a wide coherent bandwi dth. The self-seeding monochromator then notches out a narrow spectral region of this pulse to be amplified by a long portion of electron beam to full saturation. In contrast to typical self-seeding where monochromatization of noisy SASE pulses leads to either large intensity fluctuations or multiple frequencies, we show that this method produces a stable, coherent FEL output pulse with statistical properties similar to a fully coherent optical laser.
Echo-enabled harmonic generation free-electron lasers (EEHG FELs) are promising candidates to produce fully coherent soft x-ray pulses by virtue of efficient high harmonic frequency up-conversion from UV lasers. The ultimate spectral limit of EEHG, h owever, remains unclear, because of the broadening and distortions induced in the output spectrum by residual broadband energy modulations in the electron beam. We present a mathematical description of the impact of incoherent (broadband) energy modulations on the bunching spectrum produced by the microbunching instability through both the accelerator and the EEHG line. The model is in agreement with a systematic experimental characterization of the FERMI EEHG FEL in the photon energy range $130-210$ eV. We find that amplification of electron beam energy distortions primarily in the EEHG dispersive sections explains an observed reduction of the FEL spectral brightness that is proportional to the EEHG harmonic number. Local maxima of the FEL spectral brightness and of the spectral stability are found for a suitable balance of the dispersive sections strength and the first seed laser pulse energy. Such characterization provides a benchmark for user experiments and future EEHG implementations designed to reach shorter wavelengths.
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase reproducible by means of a seeding process: a short laser pulse co-propagates within the proton bunch in a rubidium vapor. Thus, the fast creation of plasma and the onset of beam-plasma interaction within the bunch drives seed wakefields. However, this seeding method leaves the front of the bunch not modulated. The bunch front could self-modulate in a second, preformed plasma and drive wakefields that would interfere with those driven by the (already self-modulated) back of the bunch and with the acceleration process. We present studies of the seeded the self-modulation (SSM) of a long proton bunch using a short electron bunch. The short seed bunch is placed ahead of the proton bunch leading to self-modulation of the entire bunch. Numerical simulations show that this method have other advantages when compared to the ionization front method. We discuss the requirements for the electron bunch parameters (charge, emittance, transverse size at the focal point, length), to effectively seed the self-modulation process. We also present preliminary experimental studies on the electron bunch seed wakefields generation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا