ترغب بنشر مسار تعليمي؟ اضغط هنا

Seeding of proton bunch self-modulation by an electron bunch in plasma

77   0   0.0 ( 0 )
 نشر من قبل Livio Verra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase reproducible by means of a seeding process: a short laser pulse co-propagates within the proton bunch in a rubidium vapor. Thus, the fast creation of plasma and the onset of beam-plasma interaction within the bunch drives seed wakefields. However, this seeding method leaves the front of the bunch not modulated. The bunch front could self-modulate in a second, preformed plasma and drive wakefields that would interfere with those driven by the (already self-modulated) back of the bunch and with the acceleration process. We present studies of the seeded the self-modulation (SSM) of a long proton bunch using a short electron bunch. The short seed bunch is placed ahead of the proton bunch leading to self-modulation of the entire bunch. Numerical simulations show that this method have other advantages when compared to the ionization front method. We discuss the requirements for the electron bunch parameters (charge, emittance, transverse size at the focal point, length), to effectively seed the self-modulation process. We also present preliminary experimental studies on the electron bunch seed wakefields generation.



قيم البحث

اقرأ أيضاً

We briefly compare in numerical simulations the relativistic ionization front and electron bunch seeding of the self-modulation of a relativistic proton bunch in plasma. When parameters are such that initial wakefields are equal with the two seeding methods, the evolution of the maximum longitudinal wakefields along the plasma are similar. We also propose a possible seeding/injection scheme using a single plasma that we will study in upcoming simulations works.
113 - E. Adli , A. Ahuja , O. Apsimon 2018
We give direct experimental evidence for the observation of the full transverse self-modulation of a relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a density modulation resulting from radial wakefield ef fects with a period reciprocal to the plasma frequency. We show that the modulation is seeded by using an intense laser pulse co-propagating with the proton bunch which creates a relativistic ionization front within the bunch. We show by varying the plasma density over one order of magnitude that the modulation period scales with the expected dependence on the plasma density.
84 - K.V. Lotov , V.A. Minakov 2020
Seeded self-modulation in a plasma can transform a long proton beam into a train of micro-bunches that can excite a strong wakefield over long distances, but this needs the plasma to have a certain density profile with a short-scale ramp up. For the parameters of the AWAKE experiment at CERN, we numerically study which density profiles are optimal if the self-modulation is seeded by a short electron bunch. With the optimal profiles, it is possible to freeze the wakefield at approximately half the wavebreaking level. High-energy electron bunches (160 MeV) are less efficient seeds than low-energy ones (18 MeV), because the wakefield of the former lasts longer than necessary for efficient seeding.
A plasma flow behind a relativistic electron bunch propagating through a cold plasma is found assuming that the transverse and longitudinal dimensions of the bunch are small and the bunch can be treated as a point charge. In addition, the bunch charg e is assumed small. A simplified system of equations for the plasma electrons is derived and it is shown that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. These equations have a unique solution, with an ion cavity formed behind the driver. The equations are solved numerically and the scaling of the cavity dimensions with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.
A linear theory of a wakefield excitation in a plasma-dielectric accelerating structure by a drive electron bunch in the case of an off-axis bunch injection has been constructed. The structure under investigation is a round dielectric-loaded metal wa veguide with a channel for the charged particles, filled with homogeneous cold plasma. Derived theory was used to investigate numerically the spatial distribution of the bunch-excited wakefield components, which act on both the drive and witness bunches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا