ﻻ يوجد ملخص باللغة العربية
Cascading stages of seeded free electron laser (FEL) is a promising way to produce fully coherent X-ray radiations. We study a new approach to produce coherent hard X-rays by cascading the recently proposed phase-merging enhanced harmonic generation (PEHG). The scheme consists of one dogleg and two PEHG configurations, which may be one of the leading candidates for the extracted undulator branch in future X-ray FEL facilities. FEL physics studies show that such a scheme is feasible within the present technology and can provide high brightness X-ray radiation pulses with narrow bandwidth and fully coherence, and the radiated peak power at 1 angstrom wavelength converted from an initial 200 nm seed laser is over 2 GW.
Resonant enhancement of high harmonic generation can be obtained in plasmas containing ions with strong radiative transitions resonant with harmonic orders. The mechanism for this enhancement is still debated. We perform the first temporal characteri
In this paper, a simple method is proposed to extend the photon energy range of a soft x-ray self-seeding free-electron laser (FEL). A normal monochromator is first applied to purify the FEL spectrum and provide a coherent seeding signal. This cohere
We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted
An optics-free method is proposed to generate X-ray radiation with spatially variant states of polarization via an afterburner extension to a Free Electron Laser (FEL). Control of the polarization in the transverse plane is obtained through the overl
SIMBOL-X is a hard X-ray mission, operating in the 0.5-70 keV range, which is proposed by a consortium of European laboratories for a launch around 2010. Relying on two spacecraft in a formation flying configuration, SIMBOL-X uses a 30 m focal length