ﻻ يوجد ملخص باللغة العربية
We compute the entanglement entropy of the Wilson-Fisher conformal field theory (CFT) in 2+1 dimensions with O($N$) symmetry in the limit of large $N$ for general entanglement geometries. We show that the leading large $N$ result can be obtained from the entanglement entropy of $N$ Gaussian scalar fields with their mass determined by the geometry. For a few geometries, the universal part of the entanglement entropy of the Wilson-Fisher CFT equals that of a CFT of $N$ massless scalar fields. However, in most cases, these CFTs have a distinct universal entanglement entropy even at $N=infty$. Notably, for a semi-infinite cylindrical region it scales as $N^0$, in stark contrast to the $N$-linear result of the Gaussian fixed point.
We study the finite-size spectrum of the O($N$) symmetric Wilson-Fisher conformal field theory (CFT) on the $d=2$ spatial-dimension torus using the expansion in $epsilon=3-d$. This is done by deriving a set of universal effective Hamiltonians describ
We investigate the infrared properties of SU(N)$_k$ conformal field theory perturbed by its adjoint primary field in 1+1 dimensions. The latter field theory is shown to govern the low-energy properties of various SU(N) spin chain problems. In particu
We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known ex
We describe the large $N$ saddle point, and the structure of fluctuations about the saddle point, of a theory containing a sharp, critical Fermi surface in two spatial dimensions. The theory describes the onset of Ising order in a Fermi liquid, and c
We study t Hooft anomalies of symmetry-enriched rational conformal field theories (RCFT) in (1+1)d. Such anomalies determine whether a theory can be realized in a truly (1+1)d system with on-site symmetry, or on the edge of a (2+1)d symmetry-protecte