ترغب بنشر مسار تعليمي؟ اضغط هنا

A Distant Mirror: Solar Oscillations Observed on Neptune by the Kepler K2 Mission

114   0   0.0 ( 0 )
 نشر من قبل Patrick Gaulme
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting in December 2014, Kepler K2 observed Neptune continuously for 49 days at a 1-minute cadence. The goals consisted of studying its atmospheric dynamics (Simon et al. 2016), detecting its global acoustic oscillations (Rowe et al., submitted), and those of the Sun, which we report on here. We present the first indirect detection of solar oscillations in intensity measurements. Beyond the remarkable technical performance, it indicates how Kepler would see a star like the Sun. The result from the global asteroseismic approach, which consists of measuring the oscillation frequency at maximum amplitude nu_max and the mean frequency separation between mode overtones Delta nu, is surprising as the nu_max measured from Neptune photometry is larger than the accepted value. Compared to the usual reference nu_max_sun = 3100 muHz, the asteroseismic scaling relations therefore make the solar mass and radius appear larger by 13.8 +/- 5.8 % and 4.3 +/- 1.9 % respectively. The higher nu_max is caused by a combination of the value of nu_max_sun, being larger at the time of observations than the usual reference from SOHO/VIRGO/SPM data (3160 +/- 10 muHz), and the noise level of the K2 time series, being ten times larger than VIRGOs. The peak-bagging method provides more consistent results: despite a low signal-to-noise ratio (SNR), we model ten overtones for degrees l=0,1,2. We compare the K2 data with simultaneous SOHO/VIRGO/SPM photometry and BiSON velocity measurements. The individual frequencies, widths, and amplitudes mostly match those from VIRGO and BiSON within 1 sigma, except for the few peaks with lowest SNR.



قيم البحث

اقرأ أيضاً

Asteroseismology of solar-type stars has an important part to play in the exoplanet program of the NASA Kepler Mission. Precise and accurate inferences on the stellar properties that are made possible by the seismic data allow very tight constraints to be placed on the exoplanetary systems. Here, we outline how to make an estimate of the detectability of solar-like oscillations in any given Kepler target, using rough estimates of the temperature and radius, and the Kepler apparent magnitude.
$theta$ Cygni is an F3 spectral-type main-sequence star with visual magnitude V=4.48. This star was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were obtained d uring Quarter 6 (June-September 2010) and subsequently in Quarters 8 and 12-17. We present analyses of the solar-like oscillations based on Q6 and Q8 data, identifying angular degree $l$ = 0, 1, and 2 oscillations in the range 1000-2700 microHz, with a large frequency separation of 83.9 plus/minus 0.4 microHz, and frequency with maximum amplitude 1829 plus/minus 54 microHz. We also present analyses of new ground-based spectroscopic observations, which, when combined with angular diameter measurements from interferometry and Hipparcos parallax, give T_eff = 6697 plus/minus 78 K, radius 1.49 plus/minus 0.03 solar radii, [Fe/H] = -0.02 plus/minus 0.06 dex, and log g = 4.23 plus/minus 0.03. We calculate stellar models matching the constraints using several methods, including using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses 1.35-1.39 solar masses and ages 1.0-1.6 Gyr. theta Cygs T_eff and log g place it cooler than the red edge of the gamma Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show gamma Dor gravity-mode pulsations driven by the convective-blocking mechanism, with frequencies of 1 to 3 cycles/day (11 to 33 microHz). However, gravity modes were not detected in the Kepler data, one signal at 1.776 cycles/day (20.56 microHz) may be attributable to a faint, possibly background, binary. Asteroseismic studies of theta Cyg and other A-F stars observed by Kepler and CoRoT, will help to improve stellar model physics and to test pulsation driving mechanisms.
We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with dete cted oscillations fall significantly with increasing levels of activity. The results present strong evidence for the impact of magnetic activity on the properties of near-surface convection in the stars, which appears to inhibit the amplitudes of the stochastically excited, intrinsically damped solar-like oscillations.
The preliminary results of an analysis of the KIC 5390438 and KIC 5701829 light curves are presented. The variations of these stars were detected by Baran et al. (2011a) in a search for pulsating M dwarfs in the Kepler public database. The objects ha ve been observed by the Kepler spacecraft during the Q2 and Q3 runs in a short-candence mode (integration time of $sim$ 1 min). A Fourier analysis of the time series data has been performed by using the PERIOD04 package. The resulting power spectrum of each star shows a clear excess of power in the frequency range 100 and 350 $mu$Hz with a sequence of spaced peaks typical of solar-like oscillations. A rough estimation of the large and small separations has been obtained. Spectroscopic observations secured at the Observatorio Astronomico Nacional in San Pedro Martir allowed us to derive a spectral classification K2III and K0III for KIC 5390438 and KIC 5701829, respectively. Thus, KIC 5390438 and KIC 5701829 have been identified as solar-like oscillating red giant stars.
We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A = 1.757 +/- 0.034 solar radii) paired with a low-mass star (M_B = 0.249 +/- 0.010 solar masses and R_B = 0.2724 +/- 0.0053 solar radii) in a mildly eccentric (e=0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1 through 11), from which a planetary period of 105.595 +/- 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 +/- 0.11 Earth radii, or 1.12 +/- 0.03 Neptune radii. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 Earth masses (7.11 Neptune masses or 0.384 Jupiter masses) at 95% confidence. This upper limit should decrease as more Kepler data become available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا